Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083283

RESUMO

Recent trends in the field of bioelectronics have been focused on the development of electrodes that facilitate safe and efficient stimulation of nervous tissues. Novel conducting polymer (CP) based materials, such as flexible and fully polymeric conductive elastomers (CEs), constitute a promising alternative to improve on the limitations of current metallic devices. This pilot study demonstrates the performance of tripolar CE-based peripheral nerve cuffs compared to current commercial tripolar platinum-iridium (PtIr) nerve cuffs in vivo. CE and metallic cuff devices were implanted onto rodent sciatic nerves for a period of 8 weeks. Throughout the entire study, the CE device demonstrated improved charge transfer and electrochemical safety compared to the PtIr cuff, able to safely inject 2 to 3 times more charge. In comparison to the commercial control, the CE cuff was able to record in the in vivo setting with reduced noise and produced smaller voltages at all simulation levels. CE technologies provide a promising alternative to metallic devices for the development of bioelectronics with enhanced chronic device functionality.


Assuntos
Polímeros , Nervo Isquiático , Projetos Piloto , Eletrodos , Nervo Isquiático/fisiologia , Próteses e Implantes
2.
J Hand Surg Eur Vol ; 48(3): 182-190, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649123

RESUMO

Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems. Currently, there is no single solution to restore sensory feedback. Rather, encouraging animal models and early human studies have demonstrated that some elements of sensation can be restored to improve prosthetic control. However, these techniques are limited to highly specialized institutions and much further work is required to reproduce the results achieved, with the goal of increasing availability of advanced closed loop prostheses that allow sensory feedback to inform more precise feedforward control movements and increase functionality.


Assuntos
Membros Artificiais , Animais , Humanos , Extremidade Superior/cirurgia , Mãos/cirurgia , Mãos/fisiologia , Sensação , Retroalimentação Sensorial , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...