Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 99(4): 974-983, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666369

RESUMO

Tubulinopathies constitute a family of neurodevelopmental/neurodegenerative disorders caused by mutations in several genes encoding tubulin isoforms. Loss-of-function mutations in TBCE, encoding one of the five tubulin-specific chaperones involved in tubulin folding and polymerization, cause two rare neurodevelopmental syndromes, hypoparathyroidism-retardation-dysmorphism and Kenny-Caffey syndrome. Although a missense mutation in Tbce has been associated with progressive distal motor neuronopathy in the pmn/pmn mice, no similar degenerative phenotype has been recognized in humans. We report on the identification of an early-onset and progressive neurodegenerative encephalopathy with distal spinal muscular atrophy resembling the phenotype of pmn/pmn mice and caused by biallelic TBCE mutations, with the c.464T>A (p.Ile155Asn) change occurring at the heterozygous/homozygous state in six affected subjects from four unrelated families originated from the same geographical area in Southern Italy. Western blot analysis of patient fibroblasts documented a reduced amount of TBCE, suggestive of rapid degradation of the mutant protein, similarly to what was observed in pmn/pmn fibroblasts. The impact of TBCE mutations on microtubule polymerization was determined using biochemical fractionation and analyzing the nucleation and growth of microtubules at the centrosome and extracentrosomal sites after treatment with nocodazole. Primary fibroblasts obtained from affected subjects displayed a reduced level of polymerized α-tubulin, similarly to tail fibroblasts of pmn/pmn mice. Moreover, markedly delayed microtubule re-polymerization and abnormal mitotic spindles with disorganized microtubule arrangement were also documented. Although loss of function of TBCE has been documented to impact multiple developmental processes, the present findings provide evidence that hypomorphic TBCE mutations primarily drive neurodegeneration.


Assuntos
Encefalopatias/complicações , Encefalopatias/genética , Chaperonas Moleculares/genética , Atrofia Muscular Espinal/complicações , Atrofia Muscular Espinal/genética , Mutação/genética , Adolescente , Idade de Início , Animais , Criança , Feminino , Fibroblastos , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/patologia , Chaperonas Moleculares/metabolismo , Nocodazol/farmacologia , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Tubulina (Proteína)/metabolismo , Adulto Jovem
2.
Mol Neurodegener ; 11(1): 43, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27277231

RESUMO

BACKGROUND: Pathological Golgi fragmentation represents a constant pre-clinical feature of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) but its molecular mechanisms remain hitherto unclear. RESULTS: Here, we show that the severe Golgi fragmentation in transgenic mutant SOD1(G85R) and SOD1(G93A) mouse motor neurons is associated with defective polymerization of Golgi-derived microtubules, loss of the COPI coat subunit ß-COP, cytoplasmic dispersion of the Golgi tether GM130, strong accumulation of the ER-Golgi v-SNAREs GS15 and GS28 as well as tubular/vesicular Golgi fragmentation. Data mining, transcriptomic and protein analyses demonstrate that both SOD1 mutants cause early presymptomatic and rapidly progressive up-regulation of the microtubule-destabilizing proteins Stathmins 1 and 2. Remarkably, mutant SOD1-triggered Golgi fragmentation and Golgi SNARE accumulation are recapitulated by Stathmin 1/2 overexpression but completely rescued by Stathmin 1/2 knockdown or the microtubule-stabilizing drug Taxol. CONCLUSIONS: We conclude that Stathmin-triggered microtubule destabilization mediates Golgi fragmentation in mutant SOD1-linked ALS and potentially also in related motor neuron diseases.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Complexo de Golgi/patologia , Microtúbulos/patologia , Neurônios Motores/patologia , Estatmina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Neurônios Motores/metabolismo , Superóxido Dismutase-1/genética
3.
Neurobiol Dis ; 82: 269-280, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26107889

RESUMO

Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease. Human motor neurons generated from induced pluripotent stem cells (iPSc) offer new perspectives for disease modeling and drug testing in ALS. In standard iPSc-derived cultures, however, the two major phenotypic alterations of ALS--degeneration of motor neuron cell bodies and axons--are often obscured by cell body clustering, extensive axon criss-crossing and presence of unwanted cell types. Here, we succeeded in isolating 100% pure and standardized human motor neurons by a novel FACS double selection based on a p75(NTR) surface epitope and an HB9::RFP lentivirus reporter. The p75(NTR)/HB9::RFP motor neurons survive and grow well without forming clusters or entangled axons, are electrically excitable, contain ALS-relevant motor neuron subtypes and form functional connections with co-cultured myotubes. Importantly, they undergo rapid and massive cell death and axon degeneration in response to mutant SOD1 astrocytes. These data demonstrate the potential of FACS-isolated human iPSc-derived motor neurons for improved disease modeling and drug testing in ALS and related motor neuron diseases.


Assuntos
Esclerose Lateral Amiotrófica , Citometria de Fluxo/métodos , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Adulto , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Astrócitos/patologia , Astrócitos/fisiologia , Axônios/patologia , Axônios/fisiologia , Sobrevivência Celular , Células Cultivadas , Criança , Técnicas de Cocultura , Genes Reporter , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Lentivirus , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Mutação , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
4.
Hum Mol Genet ; 23(22): 5961-75, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24951541

RESUMO

Golgi fragmentation is an early hallmark of many neurodegenerative diseases but its pathophysiological relevance and molecular mechanisms are unclear. We here demonstrate severe and progressive Golgi fragmentation in motor neurons of progressive motor neuronopathy (pmn) mice due to loss of the Golgi-localized tubulin-binding cofactor E (TBCE). Loss of TBCE in mutant pmn and TBCE-depleted motor neuron cultures causes defects in Golgi-derived microtubules, as expected, but surprisingly also reduced levels of COPI subunits, decreased recruitment of tethering factors p115/GM130 and impaired Golgi SNARE-mediated vesicle fusion. Conversely, ARF1, which stimulates COPI vesicle formation, enhances the recruitment of TBCE to the Golgi, increases polymerization of Golgi-derived microtubules and rescues TBCE-linked Golgi fragmentation. These data indicate an ARF1/TBCE-mediated cross-talk that coordinates COPI formation and tubulin polymerization at the Golgi. We conclude that interruption of this cross-talk causes Golgi fragmentation in pmn mice and hypothesize that similar mechanisms operate in human amyotrophic lateral sclerosis and spinal muscular atrophy.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Chaperonas Moleculares/metabolismo , Atrofia Muscular Espinal/metabolismo , Tubulina (Proteína)/metabolismo , Fator 1 de Ribosilação do ADP/genética , Esclerose Lateral Amiotrófica/genética , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Modelos Animais de Doenças , Complexo de Golgi/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/genética , Neurônios Motores/química , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Polimerização , Transdução de Sinais , Tubulina (Proteína)/química
5.
J Biol Chem ; 288(26): 19072-80, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23678001

RESUMO

Extracellular Tat is suspected to protect HIV-1-infected cells from cellular immunity. Seropositive patients are unable to produce neutralizing antibodies against Tat, and Tat is still secreted under antiviral treatment. In mice, the Tat OYI vaccine candidate generates neutralizing antibodies such as the mAb 7G12. A peptide called MIMOOX was designed from fragments of Tat OYI identified as the possible binding site for mAb 7G12. MIMOOX was chemically synthesized, and its structure was stabilized with a disulfide bridge. Circular dichroism spectra showed that MIMOOX had mainly ß turns but no α helix as Tat OYI. MIMOOX was recognized by mAb 7G12 in ELISA only in reduced conditions. Moreover, a competitive recognition assay with mAb 7G12 between MIMOOX and Tat variants showed that MIMOOX mimics a highly conserved surface in Tat variants. Rat immunizations with MIMOOX induce antibodies recognizing Tat variants from the main HIV-1 subtypes and confirm the Tat OYI vaccine approach.


Assuntos
HIV-1/química , Estrutura Terciária de Proteína , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Vacinas contra a AIDS/química , Animais , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Sítios de Ligação , Ligação Competitiva , Dicroísmo Circular , Biologia Computacional , Sequência Conservada , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Células HeLa , Humanos , Imunidade Celular , Modelos Moleculares , Peptídeos/química , Dobramento de Proteína , Ratos , Ratos Wistar , Ativação Transcricional
6.
J Biol Chem ; 287(15): 11942-50, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22362765

RESUMO

The identification of a neutralizing mAb against extracellular HIV-1 transactivator of transcription (Tat) is important for the development of an efficient HIV-1 treatment. Tat plays an essential role in HIV-1 pathogenesis, not only for HIV-1 replication but also as an extracellular toxin able to disrupt the immune system. We showed previously that immunization of rabbits with Tat Oyi, a variant cloned from an African woman who did not develop AIDS following HIV-1 infection, raised antibodies able to recognize different Tat variants. We carried out mice immunization with Tat Oyi and selected a mAb named 7G12, which had the capacity to cross-recognize heterologous Tat variants by a common three-dimensional epitope. These results highlighted that Tat variants were able to acquire a structure, in contrast to a number of studies showing Tat as an unfolded protein. mAb 7G12 also had the capacity to neutralize the biological activities of these Tat variants by blocking the cellular uptake of extracellular Tat. This is the first study using Tat Oyi to produce a mAb able to neutralize effectively activities of extracellular Tats from different HIV-1 subtypes. This mAb has an important potential in therapeutic passive immunization and could help HIV-1 infected patients to restore their immunity.


Assuntos
Anticorpos Monoclonais Murinos/química , Epitopos/imunologia , HIV-1/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/farmacologia , Afinidade de Anticorpos , Especificidade de Anticorpos , Apoptose , Proliferação de Células/efeitos dos fármacos , Mapeamento de Epitopos , HIV-1/genética , Células HeLa , Humanos , Células Jurkat/efeitos dos fármacos , Células Jurkat/fisiologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Ativação Transcricional , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
7.
Infect Disord Drug Targets ; 12(1): 81-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22280310

RESUMO

Tat is a viral protein secreted from HIV infected cells and extra cellular Tat is suspected to prevent destruction of HIV infected cells from cells of the cellular immunity. The effect of anti retroviral therapy (ART) on Tat secretion has never been investigated. In this study, we tested for antibody reactivity against Tat variants representative of the main HIV subtypes in HIV positive patients receiving ART with undetectable viral loads ( < 40 copies/mL) over the course of one year with a blood sampling every three months. For each of theses five blood sampling, an average of 50 % of patients had Anti-Tat IgG, it turned out that 86% of patients could recognize Tat at least in one blood sampling during the course of the study. Amazingly, anti-Tat IgG appeared and/or disappeared in 66 % of patients. Only 20% had anti-Tat IgG remaining persistently while 14% were consistently without anti Tat IgG in the five blood sampling. No significant correlation was found between anti-Tat IgG and CD4+ T cell, CD8+ T cell and B cell counts revealing the incapacity of these anti Tat IgG to neutralize extra cellular Tat. Interestingly the absence and then the appearance of anti-Tat IgG in patients suggest the presence of HIV infected cells in the blood that may constitute a significant reservoir of HIV infected cells. As a conclusion antiretroviral therapy does not block the secretion of Tat and may explain why HIV infected cells can survive in spite of an effective ART treatment.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Produtos do Gene tat/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/imunologia , Adulto , Ensaio de Imunoadsorção Enzimática , Feminino , Produtos do Gene tat/sangue , Produtos do Gene tat/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunoglobulina G/sangue , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
8.
Infect Disord Drug Targets ; 11(1): 57-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21303342

RESUMO

Tat is a regulatory viral protein known as transactivator of HIV-1 genes but Tat is also secreted in the blood from HIV-1 infected cells. Extra cellular Tat can cross cellular membranes to trigger apoptosis and might explain the incapacity of the cellular immunity to eliminate HIV-1 infected cells. There is a controversy regarding Tat structure with studies suggesting that Tat would be a naturally unfolded protein. Here, we show that synthetic Tat variants need to be folded to have a transactivation activity in a cellular assay but this folding is unstable regarding the buffers and/or pH used as solvent. We show also that the recognition of a Tat variant versus peptides, covering its sequence, was different. Using an indirect ELISA method with 40 sera from volunteer HIV-1 infected patients, we show that Tat was recognized by 19 human sera either exclusively (n=8) or with Tat peptides (n=11). Dot Blot showed that unfolded Tat was no longer detectable by sera of the first group (n=8) compared to folded Tat. As a conclusion, this study suggests that Tat could be a naturally folded protein in the blood of HIV infected patients.


Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Ensaio de Imunoadsorção Enzimática , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/química , HIV-1/genética , HIV-1/imunologia , Células HeLa , Humanos , Immunoblotting , Dobramento de Proteína , Produtos do Gene tat do Vírus da Imunodeficiência Humana/biossíntese , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
9.
Biochim Biophys Acta ; 1783(12): 2323-31, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18805444

RESUMO

Integrin-dependent interaction of epithelial tumor cells with extracellular matrix (ECM) is critical for their migration, but also for hematogenous dissemination. Elevated expression and activity of Src family kinases (SFKs) in colon cancer cells is often required in the disease progression. In this work, we highlighted how focal adhesion kinase (FAK) and SFKs interacted and we analyzed how PI3K/Akt and MAPK/Erk1/2 signaling pathways were activated in early stages of colon cancer cell adhesion. During the first hour, integrin engagement triggered FAK-Y397 phosphorylation and a fraction of FAK was located in lipid rafts/caveolae domains where it interacted with Fyn. The FAK-Y861 and/or -Y925 phosphorylations led to a subsequently FAK translocation out of lipid domains. In parallel, a PI3K/Akt pathway dependent of lipid microdomain integrity was activated. In contrast, the MAPK/Erk1/2 signaling triggered by adhesion increased during at least 4 h and was independent of cholesterol disturbing. Thus, FAK/Fyn interaction in lipid microdomains and a Akt-1 activation occurred at the same time during early contact with ECM suggesting a specific signaling dependent of lipid rafts/caveolae domains.


Assuntos
Adesão Celular/fisiologia , Neoplasias do Colo/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Microdomínios da Membrana , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Western Blotting , Cavéolas/metabolismo , Adesão Celular/efeitos dos fármacos , Colesterol/metabolismo , Neoplasias do Colo/patologia , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Imunoprecipitação , Integrinas , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais , Transfecção , Células Tumorais Cultivadas , Tirosina/metabolismo , beta-Ciclodextrinas/farmacologia , Quinases da Família src/metabolismo
10.
J Comp Neurol ; 495(3): 336-50, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16440294

RESUMO

Phocein, a widely expressed intracellular protein involved in clathrin- and dynamin-dependent membrane dynamics, has been shown to interact with members of the striatin family of proteins, striatin, SG2NA, and zinedin. Immunogold labeling was performed to assess subcellular localization of phocein in neurons of the rodent cerebellar cortex and hippocampal Ammon's horn. Most of the phocein-bound gold particles were located within dendritic thorns and spines of the cerebellar Purkinje cells and hippocampal pyramidal neurons, as observed previously for striatin in striatal neurons. The postsynaptic profiles containing phocein were engaged in asymmetric synapses with the main types of afferents in the cerebellum and in the hippocampus. In the cerebellum, phocein-bound immunogold particle numbers ranged from 1-20 in approximately 50% of the Purkinje cell spines. In these spines most of the immunogold particles were found in the neuroplasm ( approximately 70%) and on nonsynaptic plasma membrane domains and related structures such as endocytic-like profiles ( approximately 18%). As soon as the first postnatal week, phocein was detected in the Purkinje cell somatic and dendritic thorns making asymmetric synapses with climbing fibers. During the following weeks the protein was located in the dendritic spines, as observed in the adult molecular layer. Finally, double immunogold labeling revealed a distribution of phocein and SG2NA suggesting that the two proteins could interact in the Purkinje cell spines. The early postnatal expression of phocein, a protein involved in membrane dynamics, suggests that it may have functional relevance in dendritic remodeling during development and potentially in spine plasticity during adulthood.


Assuntos
Encéfalo/crescimento & desenvolvimento , Espinhas Dendríticas/ultraestrutura , Proteínas de Membrana/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/ultraestrutura , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Camundongos , Ratos
11.
Biochim Biophys Acta ; 1745(1): 101-10, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16085058

RESUMO

Apoptosis is a crucial mechanism to eliminate harmful cells in which growth factors and cytokines are key regulators. In HT29-D4 cells, a model of human colon carcinoma, IFNgamma presensitization is essential to induce an apoptotic response to TNFalpha whereas it only slightly enhances TRAIL-induced apoptosis. To compare the transcriptional profiles induced by TNFalpha and TRAIL and their regulation by IFNgamma, we optimized a cDNA array analysis on targeted signaling pathways and confirmed the gene expression modulations by comparative RT-PCR. Although the two TNFSF ligands induced a same strong up-expression of pro-apoptotic Bax gene, the expression of anti-apoptotic Bcl-xL gene was more strongly up-regulated in TNFalpha- than in TRAIL-stimulated cells. Thus, TRAIL but not TNFalpha induced apoptotic mitochondrial cascade as highlighted by cytochrome c release into cytosol. IFNgamma presensitization of TRAIL-stimulated cells did not induce any change in cytochrome c release, suggesting that the increase of IFNgamma/TRAIL-induced apoptosis is independent of this pathway. In contrast, IFNgamma pretreatment prevented Bcl-xL gene up-expression in TNFalpha-stimulated cells and allowed cytochrome c release. Thus, we hypothesize that the Bcl-xL/Bax ratio can block the apoptotic response in TNFalpha-stimulated cells but allows cell death initiation when it is altered by a crosstalk between IFNgamma presensitization and TNFalpha induced signalings.


Assuntos
Apoptose/fisiologia , Interferon gama/farmacologia , Glicoproteínas de Membrana/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo , Citocromos c/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF , Proteína X Associada a bcl-2 , Proteína bcl-X
12.
Am J Pathol ; 167(3): 761-73, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16127155

RESUMO

In the tumor microenvironment, autocrine/paracrine loops of insulin-like growth factors (IGFs) contribute to cancer cell survival. However, we report here that IGF-I can send contradictory signals that interfere with cell death induced by different ligands of the tumor necrosis factor (TNF) superfamily. IGF-I protected human colon carcinoma cells from TNF-alpha-induced apoptosis, but it enhanced the apoptotic response to anti-Fas antibody and TNF-related apoptosis inducing ligand stimulation. This proapoptotic effect of IGF-I, observed in several but not all tested colon cancer cell lines, was mediated via the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway. Furthermore, IGF-I receptors (IGF-IR) were located in and out of membrane lipid rafts and were tyrosine autophosphorylated in response to IGF-I. However, disruption of rafts by acute cholesterol depletion shifted IGF-IR to non-raft domains, abolished the IGF-I-mediated proapoptotic effect, and inhibited the IGF-I-dependent IRS-1 and Akt recruitment into and phosphorylation/activation within lipid rafts. Replenishing cell membranes with cholesterol reversed these effects. Activation of extracellular-regulated kinase-1/2 and p38 mitogen-activated protein kinase, which convey the IGF-I anti-apoptotic effect, occurred independently of lipid rafts. Thus, we propose that segregation of IGF-IR in and out of lipid rafts may dynamically regulate the pro- and anti-apoptotic effects of IGF-I on apoptosis induced by TNF superfamily members.


Assuntos
Apoptose , Carcinoma/fisiopatologia , Neoplasias do Colo/fisiopatologia , Microdomínios da Membrana/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Necrose Tumoral/farmacologia , Anticorpos/farmacologia , Proteínas Reguladoras de Apoptose , Carcinoma/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Neoplasias do Colo/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Glicoproteínas de Membrana/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ligante Indutor de Apoptose Relacionado a TNF , Distribuição Tecidual , Fator de Necrose Tumoral alfa/farmacologia , Fatores de Necrose Tumoral/metabolismo , Receptor fas/imunologia
13.
J Biol Chem ; 277(21): 18961-6, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11872741

RESUMO

Phocein, an intracellular protein interacting with striatin, bears a few homologies with the sigma-subunits of clathrin adaptor proteins (Baillat, G., Moqrich, A., Castets, F., Baude, A., Bailly, Y., Benmerah, A., and Monneron, A. (2001) Mol. Biol. Cell 12, 663-673). Using phocein as a bait in a yeast two-hybrid screen, we identified two novel interacting proteins, nucleoside-diphosphate kinase (NDPK) and Eps15. Immunoprecipitation and pull-down experiments involving native and/or recombinant phocein and, respectively, NDPK and Eps15, biochemically validated their interactions. NDPK and Eps15 were recently shown to be functional neighbors of dynamin. Dynamin I is shown here to directly interact with NDPK through its C-terminal proline-rich domain, whereas recombinant phocein associates with native dynamin I. Immunocytochemical studies of rat embryonic hippocampal neurons demonstrated partial co-localization of phocein and dynamin I. Phocein thus appears to be a component of the complexes involved in some steps of the vesicular traffic machinery.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Fosfoproteínas/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Dinamina I , Dinaminas , Ligação Proteica , Ratos , Ratos Wistar , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...