Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4558, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507397

RESUMO

Angiosperms became the dominant plant group in early to middle Cretaceous terrestrial ecosystems, coincident with the timing of the earliest pulse of bird diversification. While living birds and angiosperms exhibit strong interactions across pollination/nectivory, seed dispersal/frugivory, and folivory, documentation of the evolutionary origins and construction of that ecological complexity remains scarce in the Mesozoic. Through the first study of preserved in situ dietary derived phytoliths in a nearly complete skeleton of the early diverging avialan clade Jeholornithidae, we provide direct dietary evidence that Jeholornis consumed leaves likely from the magnoliid angiosperm clade, and these results lend further support for early ecological connections among the earliest birds and angiosperms. The broad diet of the early diverging avialan Jeholornis including at least fruits and leaves marks a clear transition in the early evolution of birds in the establishment of an arboreal (angiosperm) herbivore niche in the Early Cretaceous occupied largely by birds today. Morphometric reanalysis of the lower jaw of Jeholornis further supports a generalized morphology shared with other herbivorous birds, including an extant avian folivore, the hoatzin.


Assuntos
Evolução Biológica , Fósseis , Animais , Ecossistema , Frutas , Biota , Aves , Filogenia
2.
R Soc Open Sci ; 10(5): 230147, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206961

RESUMO

Although it is commonly considered that, in birds, there is a trend towards reduced dentition, teeth persisted in birds for 90 Ma and numerous macroscopic morphologies are observed. However, the extent to which the microstructure of bird teeth differs from other lineages is poorly understood. To explore the microstructural differences of the teeth of birds in comparison with closely related non-avialan dinosaurs, the enamel and dentine-related features were evaluated in four Mesozoic paravian species from the Yanliao and Jehol biotas. Different patterns of dentinal tubular tissues with mineralized extensions of the odontoblast processes were revealed through the examination of histological sectioning under electron microscopy. Secondary modification of the tubular structures, forming reactive sclerotic dentin of Longipteryx, and the mineralization of peritubular dentin of Sapeornis were observed in the mantle dentin region. The new observed features combined with other dentinal-associated ultrastructure suggest that the developmental mechanisms controlling dentin formation are quite plastic, permitting the evolution of unique morphologies associated with specialized feeding behaviours in the toothed birds. Proportionally greater functional stress placed on the stem bird teeth may have induced reactive dentin mineralization, which was observed more often within tubules of these taxa. This suggests modifications to the dentin to counteract potential failure.

3.
Commun Biol ; 4(1): 1125, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561538

RESUMO

Previous findings on dinosaur cartilage material from the Late Cretaceous of Montana suggested that cartilage is a vertebrate tissue with unique characteristics that favor nuclear preservation. Here, we analyze additional dinosaur cartilage in Caudipteryx (STM4-3) from the Early Cretaceous Jehol biota of Northeast China. The cartilage fragment is highly diagenetically altered when observed in ground-sections but shows exquisite preservation after demineralization. It reveals transparent, alumino-silicified chondrocytes and brown, ironized chondrocytes. The histochemical stain Hematoxylin and Eosin (that stains the nucleus and cytoplasm in extant cells) was applied to both the demineralized cartilage of Caudipteryx and that of a chicken. The two specimens reacted identically, and one dinosaur chondrocyte revealed a nucleus with fossilized threads of chromatin. This is the second example of fossilized chromatin threads in a vertebrate material. These data show that some of the original nuclear biochemistry is preserved in this dinosaur cartilage material and further support the hypothesis that cartilage is very prone to nuclear fossilization and a perfect candidate to further understand DNA preservation in deep time.


Assuntos
Cartilagem/citologia , Núcleo Celular/química , Dinossauros , Fósseis , Animais , China
4.
J Exp Zool B Mol Dev Evol ; 336(4): 364-375, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33666331

RESUMO

Iodine-based contrasting agents for computed tomography (CT) have been used for decades in medicine. Agents like Lugol's iodine enhance the contrasts between soft tissues and mineralized (skeletal) tissues. Because a recent study on extant avian heads showed that iodine-ethanol (I2 E) is a better contrast enhancer overall than the standard Lugol's iodine, here, we tested if I2 E could also enhance the CT contrasts of two fossilized skeletal tissues: bone and calcified cartilage. For this, we used a partial ankle joint from an extinct pheasant from the Late Miocene of Northwest China (Linxia Basin). The pre-staining CT scans showed no microstructural details of the sample. After being immersed into a solution of 1% I2 E for 8 days and scanned a second time, the contrasts were drastically enhanced between the mineralized tissues (bony trabeculae and calcified cartilage) and the sediments and minerals inside vascular spaces. After three other staining-scanning cycles in 2%, 3%, and 6% I2 E solutions, the best contrasts were obtained after immersion in 6% I2 E for 7 days. Energy Dispersive Spectroscopy showed that iodine was preferentially absorbed by the mineralized tissues and the minerals in the vascular spaces, but not by the sediments. This method not only effectively increased the contrasts of two different fossilized skeletal tissues, it was also non-destructive and reversible because part of the fossil was successfully de-stained after a few days in pure ethanol. These preliminary results indicate that iodine-ethanol has the potential to be used widely in vertebrate paleontology to improve CT imaging of fossilized tissues.


Assuntos
Álcoois/química , Aves/anatomia & histologia , Meios de Contraste , Fósseis/anatomia & histologia , Compostos de Iodo/química , Tomografia Computadorizada por Raios X/métodos , Animais , Imageamento Tridimensional/métodos
5.
Commun Biol ; 3(1): 399, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724075

RESUMO

The remains of ovarian follicles reported in nine specimens of basal birds represents one of the most remarkable examples of soft-tissue preservation in the Early Cretaceous Jehol Biota. This discovery was immediately contested and the structures alternatively interpreted as ingested seeds. Fragments of the purported follicles preserved in an enantiornithine (STM10-12) were extracted and subjected to multiple high-resolution analyses. The structures in STM10-12 possess the histological and histochemical characteristics of smooth muscles fibers intertwined together with collagen fibers, resembling the contractile structure in the perifollicular membrane (PFM) of living birds. Fossilized blood vessels, very abundant in extant PFMs, are also preserved. Energy Dispersive Spectroscopy shows the preserved tissues primarily underwent alumino-silicification, with minor mineralization via iron oxides. No evidence of plant tissue was found. These results confirm the original interpretation as follicles within the left ovary, supporting the interpretation that the right ovary was functionally lost early in avian evolution.


Assuntos
Evolução Biológica , Aves , Restos Mortais/química , Folículo Ovariano/química , Animais , Biota , Restos Mortais/metabolismo , Feminino , Fósseis , Folículo Ovariano/metabolismo , Filogenia
6.
Sci Rep ; 10(1): 6303, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286419

RESUMO

The avian transition from long to short, distally fused tails during the Mesozoic ushered in the Pygostylian group, which includes modern birds. The avian tail embodies a bipartite anatomy, with the proximal separate caudal vertebrae region, and the distal pygostyle, formed by vertebral fusion. This study investigates developmental features of the two tail domains in different bird groups, and analyzes them in reference to evolutionary origins. We first defined the early developmental boundary between the two tail halves in the chicken, then followed major developmental structures from early embryo to post-hatching stages. Differences between regions were observed in sclerotome anterior/posterior polarity and peripheral nervous system development, and these were consistent in other neognathous birds. However, in the paleognathous emu, the neognathous pattern was not observed, such that spinal nerve development extends through the pygostyle region. Disparities between the neognaths and paleognaths studied were also reflected in the morphology of their pygostyles. The ancestral long-tailed spinal nerve configuration was hypothesized from brown anole and alligator, which unexpectedly more resembles the neognathous birds. This study shows that tail anatomy is not universal in avians, and suggests several possible scenarios regarding bird evolution, including an independent paleognathous long-tailed ancestor.


Assuntos
Galinhas/fisiologia , Especiação Genética , Nervos Espinhais/crescimento & desenvolvimento , Cauda/inervação , Jacarés e Crocodilos/anatomia & histologia , Animais , Embrião de Galinha , Galinhas/anatomia & histologia , Desenvolvimento Embrionário/fisiologia , Fósseis/anatomia & histologia , Lagartos/anatomia & histologia , Filogenia , Nervos Espinhais/anatomia & histologia , Cauda/crescimento & desenvolvimento
7.
Natl Sci Rev ; 7(4): 815-822, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34692099

RESUMO

A histological ground-section from a duck-billed dinosaur nestling (Hypacrosaurus stebingeri) revealed microstructures morphologically consistent with nuclei and chromosomes in cells within calcified cartilage. We hypothesized that this exceptional cellular preservation extended to the molecular level and had molecular features in common with extant avian cartilage. Histochemical and immunological evidence supports in situ preservation of extracellular matrix components found in extant cartilage, including glycosaminoglycans and collagen type II. Furthermore, isolated Hypacrosaurus chondrocytes react positively with two DNA intercalating stains. Specific DNA staining is only observed inside the isolated cells, suggesting endogenous nuclear material survived fossilization. Our data support the hypothesis that calcified cartilage is preserved at the molecular level in this Mesozoic material, and suggest that remnants of once-living chondrocytes, including their DNA, may preserve for millions of years.

8.
Natl Sci Rev ; 7(6): 1068-1078, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34692126

RESUMO

Living birds are unique among vertebrates in the formation of a female-specific bone tissue called medullary bone (MB) that is strictly associated with reproductive activity. MB is a rapidly mobilized source of calcium and phosphorus for the production of eggshell. Among living taxa, its skeletal distribution can be highly extensive such that it even exists in the ribs of some species. Due to its ephemeral nature, MB is rarely fossilized and so little is understood with regard to the origin of MB and its skeletal distribution in early taxa. Here we describe a new Early Cretaceous enantiornithine bird, Mirusavis parvus, gen. et. sp. nov., indicating that skeleton-wide distribution of MB appeared early in avian evolution. We suggest that this represents the plesiomorphic condition for the Aves and that the distribution of MB observed among extant neornithines is a product of increased pneumatization in this lineage and natural selection for more efficient distribution of MB.

9.
Proc Natl Acad Sci U S A ; 116(49): 24696-24706, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740590

RESUMO

The avian predentary is a small skeletal structure located rostral to the paired dentaries found only in Mesozoic ornithuromorphs. The evolution and function of this enigmatic element is unknown. Skeletal tissues forming the predentary and the lower jaws in the basal ornithuromorph Yanornis martini are identified using computed-tomography, scanning electron microscopy, and histology. On the basis of these data, we propose hypotheses for the development, structure, and function of this element. The predentary is composed of trabecular bone. The convex caudal surface articulates with rostromedial concavities on the dentaries. These articular surfaces are covered by cartilage, which on the dentaries is divided into 3 discrete patches: 1 rostral articular cartilage and 2 symphyseal cartilages. The mechanobiology of avian cartilage suggests both compression and kinesis were present at the predentary-dentary joint, therefore suggesting a yet unknown form of avian cranial kinesis. Ontogenetic processes of skeletal formation occurring within extant taxa do not suggest the predentary originates within the dentaries, nor Meckel's cartilage. We hypothesize that the predentary is a biomechanically induced sesamoid that arose within the soft connective tissues located rostral to the dentaries. The mandibular canal hosting the alveolar nerve suggests that the dentary teeth and predentary of Yanornis were proprioceptive. This whole system may have increased foraging efficiency. The Mesozoic avian predentary apparently coevolved with an edentulous portion of the premaxilla, representing a unique kinetic morphotype that combined teeth with a small functional beak and persisted successfully for ∼60 million years.


Assuntos
Bico/anatomia & histologia , Aves/fisiologia , Dinossauros/anatomia & histologia , Cinese/fisiologia , Crânio/anatomia & histologia , Animais , Bico/fisiologia , Evolução Biológica , Aves/anatomia & histologia , Dinossauros/fisiologia , Fósseis/anatomia & histologia , Crânio/fisiologia
10.
PeerJ ; 7: e7764, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579624

RESUMO

In the mid-19th century, the discovery that bone microstructure in fossils could be preserved with fidelity provided a new avenue for understanding the evolution, function, and physiology of long extinct organisms. This resulted in the establishment of paleohistology as a subdiscipline of vertebrate paleontology, which has contributed greatly to our current understanding of dinosaurs as living organisms. Dinosaurs are part of a larger group of reptiles, the Archosauria, of which there are only two surviving lineages, crocodilians and birds. The goal of this review is to document progress in the field of archosaur paleohistology, focusing in particular on the Dinosauria. We briefly review the "growth age" of dinosaur histology, which has encompassed new and varied directions since its emergence in the 1950s, resulting in a shift in the scientific perception of non-avian dinosaurs from "sluggish" reptiles to fast-growing animals with relatively high metabolic rates. However, fundamental changes in growth occurred within the sister clade Aves, and we discuss this major evolutionary transition as elucidated by histology. We then review recent innovations in the field, demonstrating how paleohistology has changed and expanded to address a diversity of non-growth related questions. For example, dinosaur skull histology has elucidated the formation of curious cranial tissues (e.g., "metaplastic" tissues), and helped to clarify the evolution and function of oral adaptations, such as the dental batteries of duck-billed dinosaurs. Lastly, we discuss the development of novel techniques with which to investigate not only the skeletal tissues of dinosaurs, but also less-studied soft-tissues, through molecular paleontology and paleohistochemistry-recently developed branches of paleohistology-and the future potential of these methods to further explore fossilized tissues. We suggest that the combination of histological and molecular methods holds great potential for examining the preserved tissues of dinosaurs, basal birds, and their extant relatives. This review demonstrates the importance of traditional bone paleohistology, but also highlights the need for innovation and new analytical directions to improve and broaden the utility of paleohistology, in the pursuit of more diverse, highly specific, and sensitive methods with which to further investigate important paleontological questions.

11.
Nat Commun ; 10(1): 1275, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894527

RESUMO

Understanding non-crown dinosaur reproduction is hindered by a paucity of directly associated adults with reproductive traces. Here we describe a new enantiornithine, Avimaia schweitzerae gen. et sp. nov., from the Lower Cretaceous Xiagou Formation with an unlaid egg two-dimensionally preserved within the abdominothoracic cavity. Ground-sections reveal abnormal eggshell proportions, and multiple eggshell layers best interpreted as a multi-layered egg resulting from prolonged oviductal retention. Fragments of the shell membrane and cuticle are both preserved. SEM reveals that the cuticle consists of nanostructures resembling those found in neornithine eggs adapted for infection-prone environments, which are hypothesized to represent the ancestral avian condition. The femur preserves small amounts of probable medullary bone, a tissue found today only in reproductively active female birds. To our knowledge, no other occurrence of Mesozoic medullary bone is associated with indications of reproductive activity, such as a preserved egg, making our identification unique, and strongly supported.


Assuntos
Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Casca de Ovo/anatomia & histologia , Fêmur/anatomia & histologia , Fósseis/anatomia & histologia , Reprodução/fisiologia , Animais , Evolução Biológica , Aves/classificação , Dinossauros/classificação , Extinção Biológica , Feminino , Fósseis/diagnóstico por imagem , Fósseis/história , História Antiga , Óvulo/citologia , Filogenia
12.
Nat Commun ; 9(1): 5169, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518763

RESUMO

Medullary bone is an ephemeral type of bone tissue, today found only in sexually mature female birds, that provides a calcium reservoir for eggshell formation. The presence of medullary bone-like tissues in extant birds, pterosaurs, and dinosaurs distantly related to birds shows that caution must be exercised before concluding that fossils bear medullary bone. Here we describe a new specimen of pengornithid enantiornithine from the Lower Cretaceous Jiufotang Formation. Consisting of an isolated left hindlimb, the three-dimensional preservation contrasts with the crushed preservation characteristic of most Jehol specimens. Histological examinations suggest this resulted from the presence of a thick layer of highly vascular bone spanning the medullary cavities of the femur and tibiotarsus, consistent with expectations for medullary bone in extant birds. Micro-computed tomographic scans reveal small amounts of the same tissue extending into the pedal phalanges. We consider the tissue to be homologous to the medullary bone of Neornithines.


Assuntos
Aves/anatomia & histologia , Fósseis/anatomia & histologia , Membro Posterior/anatomia & histologia , Animais , Evolução Biológica , Feminino , Fósseis/história , História Antiga
13.
Proc Biol Sci ; 284(1851)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28330922

RESUMO

Archosaurs, like all vertebrates, have different types of joints that allow or restrict cranial kinesis, such as synovial joints and fibrous joints. In general, synovial joints are more kinetic than fibrous joints, because the former possess a fluid-filled cavity and articular cartilage that facilitate movement. Even though there is a considerable lack of data on the microstructure and the structure-function relationships in the joints of extant archosaurs, many functional inferences of cranial kinesis in fossil archosaurs have hinged on the assumption that elongated condylar joints are (i) synovial and/or (ii) kinetic. Cranial joint microstructure was investigated in an ontogenetic series of American alligators, Alligator mississippiensis All the presumably synovial, condylar joints found within the head of the American alligator (the jaw joint, otic joint and laterosphenoid-postorbital (LS-PO) joint) were studied by means of paraffin histology and undecalcified histology paired with micro-computed tomography data to better visualize three-dimensional morphology. Results show that among the three condylar joints of A. mississippiensis, the jaw joint was synovial as expected, but the otherwise immobile otic and LS-PO joints lacked a synovial cavity. Therefore, condylar morphology does not always imply the presence of a synovial articulation nor mobility. These findings reveal an undocumented diversity in the joint structure of alligators and show that crocodylians and birds build novel, kinetic cranial joints differently. This complicates accurate identification of synovial joints and functional inferences of cranial kinesis in fossil archosaurs and tetrapods in general.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Articulações/anatomia & histologia , Crânio/anatomia & histologia , Animais , Fósseis , Cinese , Microtomografia por Raio-X
14.
J Anat ; 230(3): 444-460, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27921292

RESUMO

The evolution of avian cranial kinesis is a phenomenon in part responsible for the remarkable diversity of avian feeding adaptations observable today. Although osteological, developmental and behavioral features of the feeding system are frequently studied, comparatively little is known about cranial joint skeletal tissue composition and morphology from a microscopic perspective. These data are key to understanding the developmental, biomechanical and evolutionary underpinnings of kinesis. Therefore, here we investigated joint microstructure in juvenile and adult mallard ducks (Anas platyrhynchos; Anseriformes). Ducks belong to a diverse clade of galloanseriform birds, have derived adaptations for herbivory and kinesis, and are model organisms in developmental biology. Thus, new insights into their cranial functional morphology will refine our understanding of avian cranial evolution. A total of five specimens (two ducklings and three adults) were histologically sampled, and two additional specimens (a duckling and an adult) were subjected to micro-computed tomographic scanning. Five intracranial joints were sampled: the jaw joint (quadrate-articular); otic joint (quadrate-squamosal); palatobasal joint (parasphenoid-pterygoid); the mandibular symphysis (dentary-dentary); and the craniofacial hinge (a complex flexion zone involving four different pairs of skeletal elements). In both the ducklings and adults, the jaw, otic and palatobasal joints are all synovial, with a synovial cavity and articular cartilage on each surface (i.e. bichondral joints) ensheathed in a fibrous capsule. The craniofacial hinge begins as an ensemble of patent sutures in the duckling, but in the adult it becomes more complex: laterally it is synovial; whereas medially, it is synostosed by a bridge of chondroid bone. We hypothesize that it is chondroid bone that provides some of the flexible properties of this joint. The heavily innervated mandibular symphysis is already fused in the ducklings and remains as such in the adult. The results of this study will serve as reference for documenting avian cranial kinesis from a microanatomical perspective. The formation of: (i) secondary articular cartilage on the membrane bones of extant birds; and (ii) their unique ability to form movable synovial joints within two or more membrane bones (i.e. within their dermatocranium) might have played a role in the origin and evolution of modern avian cranial kinesis during dinosaur evolution.


Assuntos
Patos/anatomia & histologia , Articulações/anatomia & histologia , Cinese , Crânio/anatomia & histologia , Animais , Microtomografia por Raio-X
15.
BMC Evol Biol ; 16: 152, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465802

RESUMO

BACKGROUND: Hadrosaurid dinosaurs, dominant Late Cretaceous herbivores, possessed complex dental batteries with up to 300 teeth in each jaw ramus. Despite extensive interest in the adaptive significance of the dental battery, surprisingly little is known about how the battery evolved from the ancestral dinosaurian dentition, or how it functioned in the living organism. We undertook the first comprehensive, tissue-level study of dental ontogeny in hadrosaurids using several intact maxillary and dentary batteries and compared them to sections of other archosaurs and mammals. We used these comparisons to pinpoint shifts in the ancestral reptilian pattern of tooth ontogeny that allowed hadrosaurids to form complex dental batteries. RESULTS: Comparisons of hadrosaurid dental ontogeny with that of other amniotes reveals that the ability to halt normal tooth replacement and functionalize the tooth root into the occlusal surface was key to the evolution of dental batteries. The retention of older generations of teeth was driven by acceleration in the timing and rate of dental tissue formation. The hadrosaurid dental battery is a highly modified form of the typical dinosaurian gomphosis with a unique tooth-to-tooth attachment that permitted constant and perfectly timed tooth eruption along the whole battery. CONCLUSIONS: We demonstrate that each battery was a highly dynamic, integrated matrix of living replacement and, remarkably, dead grinding teeth connected by a network of ligaments that permitted fine scale flexibility within the battery. The hadrosaurid dental battery, the most complex in vertebrate evolution, conforms to a surprisingly simple evolutionary model in which ancestral reptilian tissue types were redeployed in a unique manner. The hadrosaurid dental battery thus allows us to follow in great detail the development and extended life history of a particularly complex food processing system, providing novel insights into how tooth development can be altered to produce complex dentitions, the likes of which do not exist in any living vertebrate.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Dente/anatomia & histologia , Animais , Fósseis/anatomia & histologia , Odontogênese , Dente/crescimento & desenvolvimento
16.
J Anat ; 229(2): 252-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27111332

RESUMO

Sutures and synchondroses, the fibrous and cartilaginous articulations found in the skulls of vertebrates, have been studied for many biological applications at the morphological scale. However, little is known about these articulations at the microscopic scale in non-mammalian vertebrates, including extant archosaurs (birds and crocodilians). The major goals of this paper were to: (i) document the microstructure of some sutures and synchondroses through ontogeny in archosaurs; (ii) compare these microstructures with previously published sutural histology (i.e. that of mammals); and (iii) document how these articulations with different morphological degrees of closure (open or obliterated) appear histologically. This was performed with histological analyses of skulls of emus, American alligators, a fossil crocodilian and ornithischian dinosaurs (hadrosaurids, pachycephalosaurids and ceratopsids). Emus and mammals possess a sutural periosteum until sutural fusion, but it disappears rapidly during ontogeny in American alligators. This study identified seven types of sutural mineralized tissues in extant and extinct archosaurs and grouped them into four categories: periosteal tissues; acellular tissues; fibrous tissues; and intratendinous tissues. Due to the presence of a periosteum in their sutures, emus and mammals possess periosteal tissues at their sutural borders. The mineralized sutural tissues of crocodilians and ornithischian dinosaurs are more variable and can also develop via a form of necrosis for acellular tissues and metaplasia for fibrous and intratendinous tissues. It was hypothesized that non-avian dinosaurs, like the American alligator, lacked a sutural periosteum and that their primary mode of ossification involved the direct mineralization of craniofacial sutures (instead of intramembranous ossification found in mammals and birds). However, we keep in mind that a bird-like sutural microstructure might have arisen within non-avian saurichians. While synchondroseal histology is relatively similar in archosaurs and mammals, the microstructural differences between the sutures of these two clades are undeniable. Moreover, the current results suggest that the degree of sutural closure can only accurately be known via microstructural analyses. This study sheds light on the microstructure and growth of archosaurian sutures and synchondroses, and reveals a unique, undocumented histological diversity in non-avian dinosaur skulls.


Assuntos
Suturas Cranianas/anatomia & histologia , Dinossauros/anatomia & histologia , Histologia Comparada/métodos , Base do Crânio/anatomia & histologia , Jacarés e Crocodilos/anatomia & histologia , Animais , Fósseis , Filogenia
17.
PLoS One ; 11(2): e0147687, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26862766

RESUMO

The sutures of the skulls of vertebrates are generally open early in life and slowly close as maturity is attained. The assumption that all vertebrates follow this pattern of progressive sutural closure has been used to assess maturity in the fossil remains of non-avian dinosaurs. Here, we test this assumption in two members of the Extant Phylogenetic Bracket of the Dinosauria, the emu, Dromaius novaehollandiae and the American alligator, Alligator mississippiensis, by investigating the sequence and timing of sutural fusion in their skulls. As expected, almost all the sutures in the emu skull progressively close (i.e., they get narrower) and then obliterate during ontogeny. However, in the American alligator, only two sutures out of 36 obliterate completely and they do so during embryonic development. Surprisingly, as maturity progresses, many sutures of alligators become wider in large individuals compared to younger, smaller individuals. Histological and histomorphometric analyses on two sutures and one synchondrosis in an ontogenetic series of American alligator confirmed our morphological observations. This pattern of sutural widening might reflect feeding biomechanics and dietary changes through ontogeny. Our findings show that progressive sutural closure is not always observed in extant archosaurs, and therefore suggest that cranial sutural fusion is an ambiguous proxy for assessing maturity in non-avian dinosaurs.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Suturas Cranianas/anatomia & histologia , Dinossauros/anatomia & histologia , Dromaiidae/anatomia & histologia , Crânio/anatomia & histologia , Jacarés e Crocodilos/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Dinossauros/fisiologia , Dromaiidae/fisiologia , Fósseis , Modelos Lineares , Louisiana , Filogenia , Especificidade da Espécie
18.
PLoS One ; 8(2): e56937, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418610

RESUMO

The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.


Assuntos
Osso e Ossos/anatomia & histologia , Cartilagem/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis , Animais , Evolução Biológica , Aves/anatomia & histologia , Aves/embriologia , Osso e Ossos/embriologia , Cartilagem/embriologia , Condrogênese , Dinossauros/embriologia , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/embriologia
19.
PLoS One ; 7(4): e36112, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558351

RESUMO

Bone and calcified cartilage can be fossilized and preserved for hundreds of millions of years. While primary cartilage is fairly well studied in extant and fossilized organisms, nothing is known about secondary cartilage in fossils. In extant birds, secondary cartilage arises after bone formation during embryonic life at articulations, sutures and muscular attachments in order to accommodate mechanical stress. Considering the phylogenetic inclusion of birds within the Dinosauria, we hypothesized a dinosaurian origin for this "avian" tissue. Therefore, histological thin sectioning was used to investigate secondary chondrogenesis in disarticulated craniofacial elements of several post-hatching specimens of the non-avian dinosaur Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). Secondary cartilage was found on three membrane bones directly involved with masticatory function: (1) as nodules on the dorso-caudal face of a surangular; and (2) on the bucco-caudal face of a maxilla; and (3) between teeth as islets in the alveolar processes of a dentary. Secondary chondrogenesis at these sites is consistent with the locations of secondary cartilage in extant birds and with the induction of the cartilage by different mechanical factors - stress generated by the articulation of the quadrate, stress of a ligamentous or muscular insertion, and stress of tooth formation. Thus, our study reveals the first evidence of "avian" secondary cartilage in a non-avian dinosaur. It pushes the origin of this "avian" tissue deep into dinosaurian ancestry, suggesting the creation of the more appropriate term "dinosaurian" secondary cartilage.


Assuntos
Cartilagem/anatomia & histologia , Dinossauros/anatomia & histologia , Crânio/anatomia & histologia , Animais , Animais Recém-Nascidos , Condrogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...