Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(1): e14220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356368

RESUMO

Myrtaceae species are abundant in tropical Atlantic rainforests, but 41% of the 5500 species of this family are of extreme conservation concern. Eugenia astringens and E. uniflora are native Brazilian Myrtaceae species that occur in the same habitats and produce desiccation-sensitive (DS) seeds. We hypothesized that their seed desiccation-sensitivity degree is associated with specific metabolic signatures. To test it, we analyzed the germination and metabolic profiles of fresh and desiccated seeds. The water content (WC) at which at least half of the seeds survived desiccation was lower in E. astringens (0.17 g H2 O g-1 DW) than in E. uniflora (0.41 g H2 O g-1 DW). We identified 103 annotated metabolites from 3261 peaks in both species, which differed in their relative contents between E. astringens and E. uniflora seeds. The main differences in seed metabolic profiles include several protective molecules in the group of carbohydrates and organic acids and amino acid contents. The relative contents of monosaccharides and disaccharides, malic and quinic acids, amino acids and saturated fatty acids may have taken part in the distinct DS behaviour of E. astringens and E. uniflora seeds. Our study provides evidence of the relationship between desiccation sensitivity, seed viability and metabolic profile of tropical seeds by comparing two closely related Eugenia species with different DS degrees.


Assuntos
Eugenia , Myrtaceae , Dessecação , Germinação , Sementes , Aminoácidos , Metaboloma
2.
Front Plant Sci ; 14: 1260292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941673

RESUMO

Seed germination is a major determinant of plant development and final yield establishment but strongly reliant on the plant's abiotic and biotic environment. In the context of global climate change, classical approaches to improve seed germination under challenging environments through selection and use of synthetic pesticides reached their limits. A currently underexplored way is to exploit the beneficial impact of the microorganisms associated with plants. Among plant microbiota, endophytes, which are micro-organisms living inside host plant tissues without causing any visible symptoms, are promising candidates for improving plant fitness. They possibly establish a mutualistic relationship with their host, leading to enhanced plant yield and improved tolerance to abiotic threats and pathogen attacks. The current view is that such beneficial association relies on chemical mediations using the large variety of molecules produced by endophytes. In contrast to leaf and root endophytes, seed-borne fungal endophytes have been poorly studied although they constitute the early-life plant microbiota. Moreover, seed-borne fungal microbiota and its metabolites appear as a pertinent lever for seed quality improvement. This review summarizes the recent advances in the identification of seed fungal endophytes and metabolites and their benefits for seed biology, especially under stress. It also addresses the mechanisms underlying fungal effects on seed physiology and their potential use to improve crop seed performance.'

3.
Front Plant Sci ; 14: 1186960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384363

RESUMO

Climate change due to global warming is now affecting agricultural production worldwide. In rice, one of the most important crops, water limitation due to irregular rainfall in rainfed lowlands during crop growth limits yield. Dry direct-sowing has been proposed as a water-efficient approach to cope with water stress during rice growth, but poor seedling establishment due to drought during germination and emergence is a problem. Here, we germinated indica rice cultivars Rc348 (drought tolerant) and Rc10 (drought sensitive) under osmotic stress induced by PEG to elucidate mechanisms of germination under drought. Rc348 had higher germination rate and germination index under severe osmotic stress of -1.5 MPa, above those of Rc10. Rc348 showed up-regulated GA biosynthesis, down-regulated ABA catabolism, and up-regulated α-amylase gene expression in imbibed seeds under PEG treatment compared to that of Rc10. During germination, reactive oxygen species (ROS) play important roles in antagonism between gibberellic acid (GA) and abscisic acid (ABA). Embryo of Rc348 treated with PEG had significantly greater expression of NADPH oxidase genes and higher endogenous ROS levels, together with significantly increased endogenous GA1, GA4 and ABA contents compared to that of Rc10. In aleurone layers treated with exogenous GA, expression of α-amylase genes was higher in Rc348 than in Rc10, and expression of NADPH oxidase genes was enhanced with significantly higher ROS content in Rc348, suggesting higher sensitivity of GA to ROS production and starch degradation in aleurone cells of Rc348. These results suggest that the osmotic stress tolerance of Rc348 is due to enhancement of ROS production, GA biosynthesis, and GA sensitivity, resulting in a higher germination rate under osmotic stress.

4.
Biochem J ; 480(3): 177-196, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749123

RESUMO

In agriculture, seeds are the most basic and vital input on which croplands productivity depends. These implies a good starting material, good production lines and good storage options. High-quality seed lots must be free of pests and pathogens and contain a required degree of genetic purity. Seeds need also to be stored in good condition between harvest and later sowing, to insure later on the field a good plant density and higher crop yield. In general, these parameters are already widely accepted and considered in many countries where advanced technologies evaluate them. However, the more and more frequently devastating climate changes observed around the world has put seed quality under threat, and current seeds may not be adapted to hazardous and unpredictable conditions. Climate-related factors such as temperature and water availability directly affect seed development and later germination. For these reasons, investigating seed quality in response to climate changes is a step to propose new crop varieties and practices that will bring solutions for our future.


Assuntos
Germinação , Dormência de Plantas , Dormência de Plantas/fisiologia , Germinação/fisiologia , Temperatura , Sementes , Agricultura
5.
Front Plant Sci ; 13: 1049323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570960

RESUMO

High seed quality is key to agricultural production, which is increasingly affected by climate change. We studied the effects of drought and elevated temperature during seed production on key seed quality traits of two genotypes of malting barley (Hordeum sativum L.). Plants of a "Hana-type" landrace (B1) were taller, flowered earlier and produced heavier, larger and more vigorous seeds that resisted ageing longer compared to a semi-dwarf breeding line (B2). Accordingly, a NAC domain-containing transcription factor (TF) associated with rapid response to environmental stimuli, and the TF ABI5, a key regulator of seed dormancy and vigour, were more abundant in B1 seeds. Drought significantly reduced seed yield in both genotypes, and elevated temperature reduced seed size. Genotype B2 showed partial thermodormancy that was alleviated by drought and elevated temperature. Metabolite profiling revealed clear differences between the embryos of B1 and B2. Drought, but not elevated temperature, affected the metabolism of amino acids, organic acids, osmolytes and nitrogen assimilation, in the seeds of both genotypes. Our study may support future breeding efforts to produce new lodging and drought resistant malting barleys without trade-offs that can occur in semi-dwarf varieties such as lower stress resistance and higher dormancy.

6.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012613

RESUMO

In Arabidopsis thaliana, the breaking of seed dormancy in wild type (Col-0) by ethylene at 100 µL L-1 required at least 30 h application. A mutant of the proteolytic N-degron pathway, lacking the E3 ligase PROTEOLYSIS 6 (PRT6), was investigated for its role in ethylene-triggered changes in proteomes during seed germination. Label-free quantitative proteomics was carried out on dormant wild type Col-0 and prt6 seeds treated with (+) or without (-) ethylene. After 16 h, 1737 proteins were identified, but none was significantly different in protein levels in response to ethylene. After longer ethylene treatment (30 h), 2552 proteins were identified, and 619 Differentially Expressed Proteins (DEPs) had significant differences in protein abundances between ethylene treatments and genotypes. In Col, 587 DEPs were enriched for those involved in signal perception and transduction, reserve mobilization and new material generation, which potentially contributed to seed germination. DEPs up-regulated by ethylene in Col included S-adenosylmethionine synthase 1, methionine adenosyltransferase 3 and ACC oxidase involved in ethylene synthesis and of Pyrabactin Resistance1 acting as an ABA receptor, while DEPs down-regulated by ethylene in Col included aldehyde oxidase 4 involved in ABA synthesis. In contrast, in prt6 seeds, ethylene did not result in strong proteomic changes with only 30 DEPs. Taken together, the present work demonstrates that the proteolytic N-degron pathway is essential for ethylene-mediated reprogramming of seed proteomes during germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Germinação/fisiologia , Dormência de Plantas , Proteólise , Proteoma/metabolismo , Proteômica , Sementes/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806063

RESUMO

Seed germination is critical for early plantlet development and is tightly controlled by environmental factors. Nevertheless, the signaling networks underlying germination control remain elusive. In this study, the remodeling of Arabidopsis seed phosphoproteome during imbibition was investigated using stable isotope dimethyl labeling and nanoLC-MS/MS analysis. Freshly harvested seeds were imbibed under dark or constant light to restrict or promote germination, respectively. For each light regime, phosphoproteins were extracted and identified from dry and imbibed (6 h, 16 h, and 24 h) seeds. A large repertoire of 10,244 phosphopeptides from 2546 phosphoproteins, including 110 protein kinases and key regulators of seed germination such as Delay Of Germination 1 (DOG1), was established. Most phosphoproteins were only identified in dry seeds. Early imbibition led to a similar massive downregulation in dormant and non-dormant seeds. After 24 h, 411 phosphoproteins were specifically identified in non-dormant seeds. Gene ontology analyses revealed their involvement in RNA and protein metabolism, transport, and signaling. In addition, 489 phosphopeptides were quantified, and 234 exhibited up or downregulation during imbibition. Interaction networks and motif analyses revealed their association with potential signaling modules involved in germination control. Our study provides evidence of a major role of phosphosignaling in the regulation of Arabidopsis seed germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/fisiologia , Fosfopeptídeos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Dormência de Plantas/genética , Sementes/genética , Espectrometria de Massas em Tandem
8.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563227

RESUMO

A timely and efficient seed germination is critical for plantlets' establishment and robustness as well as plant development and plant performance in both natural ecosystems and agrosystems [...].


Assuntos
Germinação , Sementes , Ecossistema , Regulação da Expressão Gênica de Plantas , Germinação/fisiologia , Plantas , Sementes/fisiologia , Transdução de Sinais
9.
Plants (Basel) ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214905

RESUMO

In recent years, several reports pointed out the role of protein oxidation in seed longevity, notably regarding the oxidation of methionine (Met) residues to methionine sulfoxide (MetO) in proteins. To further consider this question, we present a handy proteomic method based on the use of two-dimensional diagonal electrophoresis (2Dd) and cyanogen bromide (CNBr) cleavage, which we refer to as 2Dd-CNBr. CNBr treatment of proteins causes the non-enzymatic hydrolysis of peptide bonds on the carboxyl side of reduced Met residues. However, Met oxidation causes a lack of cleavage, thus modifying the electrophoretic mobility of CNBr-induced peptides. This approach was first validated using bovine serum albumin as a model protein, which confirmed the possibility of distinguishing between oxidized and non-oxidized forms of Met-containing peptides in gels. Then, the 2Dd-CNBr method was applied to the Arabidopsis thaliana seed protein extract in a control (non-oxidized) condition and in an oxidized one (as obtained following hypochlorous acid treatment). Twenty-four oxidized Met residues in 19 proteins identified by mass spectrometry were found to be surface exposed in these proteins. In the three-dimensional environment of the oxidized Met, we detected amino acid residues that could be converted by oxidation (carbonylation) or by phosphorylation, suggesting a possible interplay between Met oxidation and the other protein modifications. The identification of the proteins oxidatively modified in Met residues revealed the finding that MetO-containing proteins are related to seed longevity. Based on these results, we suggest that the method presently described also has the potential for wider applications.

10.
New Phytol ; 234(3): 850-866, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35175638

RESUMO

Reactive oxygen species (ROS) release seed dormancy through an unknown mechanism. We used different seed dormancy-breaking treatments to decipher the dynamics and localization of ROS production during seed germination. We studied the involvement of ROS in the breaking of Arabidopsis seed dormancy by cold stratification, gibberellic acid (GA3 ) and light. We characterized the effects of these treatments on abscisic acid and gibberellins biosynthesis and signalling pathways. ROS, mitochondrial redox status and peroxisomes were visualized and/or quantified during seed imbibition. Finally, we performed a cytogenetic characterization of the nuclei from the embryonic axes during seed germination. We show that mitochondria participate in the early ROS production during seed imbibition and that a possible involvement of peroxisomes in later stages should still be analysed. At the time of radicle protrusion, ROS accumulated within the nucleus, which correlated with nuclear expansion and chromatin decompaction. Taken together, our results provide evidence of the role of ROS trafficking between organelles and of the nuclear redox status in the regulation of seed germination by dormancy.


Assuntos
Arabidopsis , Dormência de Plantas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas/metabolismo , Giberelinas/farmacologia , Dormência de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sementes/fisiologia
11.
Plant Cell Physiol ; 63(4): 550-564, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35139224

RESUMO

In barley, incubation of primary dormant (D1) grains on water under conditions that do not allow germination, i.e. 30°C in air and 15°C or 30°C in 5% O2, induces a secondary dormancy (D2) expressed as a loss of the ability to germinate at 15°C in air. The aim of this study was to compare the proteome of barley embryos isolated from D1 grains and D2 ones after induction of D2 at 30°C or in hypoxia at 15°C or 30°C. Total soluble proteins were analyzed by 2DE gel-based proteomics, allowing the selection of 130 differentially accumulated proteins (DAPs) among 1,575 detected spots. According to the protein abundance profiles, the DAPs were grouped into six abundance-based similarity clusters. Induction of D2 is mainly characterized by a down-accumulation of proteins belonging to cluster 3 (storage proteins, proteases, alpha-amylase inhibitors and histone deacetylase HD2) and an up-accumulation of proteins belonging to cluster 4 (1-Cys peroxiredoxin, lipoxygenase2 and caleosin). The correlation-based network analysis for each cluster highlighted central protein hub. In addition, most of genes encoding DAPs display high co-expression degree with 19 transcription factors. Finally, this work points out that similar molecular events accompany the modulation of dormancy cycling by both temperature and oxygen, including post-translational, transcriptional and epigenetic regulation.


Assuntos
Hordeum , Ácido Abscísico/metabolismo , Epigênese Genética , Germinação , Hordeum/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio/metabolismo , Dormência de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Sementes/metabolismo , Temperatura
12.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638735

RESUMO

In Arabidopsis seeds, ROS have been shown to be enabling actors of cellular signaling pathways promoting germination, but their accumulation under stress conditions or during aging leads to a decrease in the ability to germinate. Previous biochemical work revealed that a specific class of plastid thioredoxins (Trxs), the y-type Trxs, can fulfill antioxidant functions. Among the ten plastidial Trx isoforms identified in Arabidopsis, Trx y1 mRNA is the most abundant in dry seeds. We hypothesized that Trx y1 and Trx y2 would play an important role in seed physiology as antioxidants. Using reverse genetics, we found important changes in the corresponding Arabidopsis mutant seeds. They display remarkable traits such as increased longevity and higher and faster germination in conditions of reduced water availability or oxidative stress. These phenotypes suggest that Trxs y do not play an antioxidant role in seeds, as further evidenced by no changes in global ROS contents and protein redox status found in the corresponding mutant seeds. Instead, we provide evidence that marker genes of ABA and GAs pathways are perturbed in mutant seeds, together with their sensitivity to specific hormone inhibitors. Altogether, our results suggest that Trxs y function in Arabidopsis seeds is not linked to their previously identified antioxidant roles and reveal a new role for plastid Trxs linked to hormone regulation.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Plastídeos/metabolismo , Sementes/metabolismo , Tiorredoxinas/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Germinação , Reguladores de Crescimento de Plantas/genética , Plastídeos/genética , Sementes/crescimento & desenvolvimento , Tiorredoxinas/genética
13.
J Integr Plant Biol ; 63(12): 2110-2122, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34542217

RESUMO

Primary dormant seeds of Arabidopsis thaliana did not germinate in darkness at temperature higher than 10-15°C. Ethylene improved the germination of dormant wild-type (Col-0) seeds at 25°C in darkness but seeds of the mutant affected in the proteolytic N-degron pathway, proteolysis6 (prt6), were insensitive to ethylene suggesting that PRT6 was involved in dormancy release by ethylene. The substrates of the N-degron pathway, the Ethylene Response Factors from group VII (HRE1, HRE2, RAP2.2, RAP2.3, and RAP2.12), were identified to be involved in this insensitivity with an increased germination in prt6 rap2.2 rap2.3 rap2.12 rather than in prt6 hre1 hre2, which also indicated that the three RAPs acted downstream of PRT6, while the two HREs acted upstream of PRT6. Ethylene reduced the expression of the three RAPs in Col-0 seeds but they were maintained or induced by ethylene in prt6 seeds. The promoting effect of ethylene was associated with a down-regulation of dormancy-related genes in gibberellins (GAs) and abscisic acid (ABA) signaling, such as RGA, RGL2, and ABI5, and with a strong decrease in ABA/GA4 ratio in the presence of ethylene. In contrast, we show that the insensitivity of prt6 seeds to ethylene was mainly related to GA signaling disturbance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas/metabolismo , Dormência de Plantas/genética , Sementes/metabolismo
14.
Biochem J ; 478(10): 1977-1984, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34047788

RESUMO

Underground early development of higher plants includes two distinct developmental processes, seed germination and then skotomorphogenesis, a mechanism which favours elongation of the hypocotyl and helps the seedling to find light. Interestingly, both processes, which are regulated by plant hormones, have been shown to depend on reactive oxygen species metabolism and to be related to mitochondrial retrograde signalling. Here we review the recent outcomes in this field of research and highlight the emerging role of ROS communication between organelles and cell compartments. We point out the role of mitochondria as an environmental and developmental sensor organelle that regulates ROS homeostasis and downstream events and we propose future directions of research that should help better understanding the roles of ROS in germination and seedling emergence.


Assuntos
Comunicação Celular , Germinação , Mitocôndrias/fisiologia , Organelas/fisiologia , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/crescimento & desenvolvimento , Estresse Oxidativo , Sementes/metabolismo , Transdução de Sinais
15.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919775

RESUMO

Histone chaperones regulate the flow and dynamics of histone variants and ensure their assembly into nucleosomal structures, thereby contributing to the repertoire of histone variants in specialized cells or tissues. To date, not much is known on the distribution of histone variants and their modifications in the dry seed embryo. Here, we bring evidence that genes encoding the replacement histone variant H3.3 are expressed in Arabidopsis dry seeds and that embryo chromatin is characterized by a low H3.1/H3.3 ratio. Loss of HISTONE REGULATOR A (HIRA), a histone chaperone responsible for H3.3 deposition, reduces cellular H3 levels and increases chromatin accessibility in dry seeds. These molecular differences are accompanied by increased seed dormancy in hira-1 mutant seeds. The loss of HIRA negatively affects seed germination even in the absence of HISTONE MONOUBIQUITINATION 1 or TRANSCRIPTION ELONGATION FACTOR II S, known to be required for seed dormancy. Finally, hira-1 mutant seeds show lower germination efficiency when aged under controlled deterioration conditions or when facing unfavorable environmental conditions such as high salinity. Altogether, our results reveal a dependency of dry seed chromatin organization on the replication-independent histone deposition pathway and show that HIRA contributes to modulating seed dormancy and vigor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Germinação , Chaperonas de Histonas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Cromatina/metabolismo , Epistasia Genética/efeitos dos fármacos , Temperatura Alta , Umidade , Vigor Híbrido , Mutação/genética , Dormência de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Estresse Salino , Fatores de Elongação da Transcrição/metabolismo
16.
New Phytol ; 229(4): 2192-2205, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33020928

RESUMO

Ethylene and reactive oxygen species (ROS) regulate seed dormancy alleviation, but the molecular basis of their action and crosstalk remains largely unknown. Here we studied the mechanism of Arabidopsis seed dormancy release by ethylene using cell imaging, and genetic and transcriptomics approaches, in order to tackle its possible interaction with ROS homeostasis. We found that the effect of ethylene on seed germination required ROS production by the mitochondrial electron transport chain. Seed response to ethylene involved a mitochondrial retrograde response (MRR) through nuclear ROS production and upregulation of the MRR components AOX1a and ANAC013, but also required the activation of the ethylene canonical pathway. Together our data allowed deciphering of the mode of action of ethylene on seed germination and the associated dynamics of ROS production. Our findings highlight the occurrence of retrograde signalling in seed germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Germinação , Mitocôndrias/metabolismo , Dormência de Plantas , Sementes/metabolismo , Fatores de Transcrição/metabolismo
17.
BMC Biol ; 18(1): 44, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32354334

RESUMO

BACKGROUND: Upon water uptake and release of seed dormancy, embryonic plant cells expand, while being mechanically constrained by the seed coat. Cortical microtubules (CMTs) are key players of cell elongation in plants: their anisotropic orientation channels the axis of cell elongation through the guidance of oriented deposition of load-bearing cellulose microfibrils in the cell wall. Interestingly, CMTs align with tensile stress, and consistently, they reorient upon compressive stress in growing hypocotyls. How CMTs first organise in germinating embryos is unknown, and their relation with mechanical stress has not been investigated at such an early developing stage. RESULTS: Here, we analysed CMT dynamics in dormant and non-dormant Arabidopsis seeds by microscopy of fluorescently tagged microtubule markers at different developmental time points and in response to abscisic acid and gibberellins. We found that CMTs first appear as very few thick bundles in dormant seeds. Consistently, analysis of available transcriptome and translatome datasets show that limiting amounts of tubulin and microtubule regulators initially hinder microtubule self-organisation. Seeds imbibed in the presence of gibberellic acid or abscisic acid displayed altered microtubule organisation and transcriptional regulation. Upon the release of dormancy, CMTs then self-organise into multiple parallel transverse arrays. Such behaviour matches the tensile stress patterns in such mechanically constrained embryos. This suggests that, as CMTs first self-organise, they also align with shape-derived tensile stress patterns. CONCLUSIONS: Our results provide a scenario in which dormancy release in the embryo triggers microtubule self-organisation and alignment with tensile stress prior to germination and anisotropic growth.


Assuntos
Arabidopsis/fisiologia , Germinação , Microtúbulos/fisiologia , Sementes/fisiologia
18.
Plants (Basel) ; 9(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245078

RESUMO

Seed vigor is an important trait that determines seed performance in the field, which corresponds to seed germination rate and seedling establishment. Previous works brought helpful equations to calculate several parameters allowing vigor characterization. In this work we used base water potential (Ψb), base temperature (Tb) and seed lot (Ki) constants to characterize the vigor of 44 sunflower seed lots. Contrasting responses to water or temperature stress and storage potential were recorded within this population, the most interesting being the opposite responses between Ψb and Ki. The genotypes that were resistant to water stress presented low ability for storage and vice versa. Furthermore, Ψb and Ki presented narrow ranges while Tb showed important variability within the 44 genotypes. The analysis of the whole dataset showed that these constants are not correlated to each other or to the seed size, suggesting that genetic background is the most important determining factor in seed performance. Consequently, vigor characterization of genotypes is needed in the crop selection process in order to optimize agricultural productivity.

19.
Biochem J ; 477(1): 259-274, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31950999

RESUMO

To ensure the success of the new generation in annual species, the mother plant transfers a large proportion of the nutrients it has accumulated during its vegetative life to the next generation through its seeds. Iron (Fe) is required in large amounts to provide the energy and redox power to sustain seedling growth. However, free Fe is highly toxic as it leads to the generation of reactive oxygen species. Fe must, therefore, be tightly bound to chelating molecules to allow seed survival for long periods of time without oxidative damage. Nevertheless, when conditions are favorable, the seed's Fe stores have to be readily remobilized to achieve the transition toward active photosynthesis before the seedling becomes able to take up Fe from the environment. This is likely critical for the vigor of the young plant. Seeds constitute an important dietary source of Fe, which is essential for human health. Understanding the mechanisms of Fe storage in seeds is a key to improve their Fe content and availability in order to fight Fe deficiency. Seed longevity, germination efficiency and seedling vigor are also important traits that may be affected by the chemical form under which Fe is stored. In this review, we summarize the current knowledge on seed Fe loading during development, long-term storage and remobilization upon germination. We highlight how this knowledge may help seed Fe biofortification and discuss how Fe storage may affect the seed quality and germination efficiency.


Assuntos
Arabidopsis/metabolismo , Germinação/fisiologia , Ferro/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia
20.
Plant Cell Environ ; 43(5): 1300-1313, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31994739

RESUMO

Seed germination is regulated by environmental factors, particularly water availability. Water deficits at the time of sowing impair the establishment of crop plants. Transcriptome and proteome profiling was used to document the responses of sunflower (Helianthus annuus) seeds to moderate water stress during germination in two hybrids that are nominally classed as drought sensitive and drought tolerant. Differences in the water stress-dependent accumulation reactive oxygen species and antioxidant enzymes activities were observed between the hybrids. A pathway-based analysis of the hybrid transcriptomes demonstrated that the water stress-dependent responses of seed metabolism were similar to those of the plant, with a decreased abundance of transcripts encoding proteins associated with metabolism and cell expansion. Moreover, germination under water stress conditions was associated with increased levels of transcripts encoding heat shock proteins. Exposure of germinating seeds to water stress specifically affected the abundance of a small number of proteins, including heat shock proteins. Taken together, these data not only identify factors that are likely to play a key role in drought tolerance during seed germination, but they also demonstrate the importance of the female parent in the transmission of water stress tolerance.


Assuntos
Germinação/fisiologia , Helianthus/fisiologia , Sementes/fisiologia , Antioxidantes/metabolismo , Desidratação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Choque Térmico/metabolismo , Helianthus/metabolismo , Peróxido de Hidrogênio/metabolismo , Redes e Vias Metabólicas , Proteínas de Plantas/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...