Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Drug Test Anal ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636555

RESUMO

The Association of Official Racing Chemists (AORC) guidelines for drug testing in animal hair provide animal sport doping control laboratories with a framework for the implementation of a robust and legally defensible program for the analysis, both screening and confirmatory, of animal hair samples. The guidelines were compiled by the AORC Hair Analysis Committee, which is comprised of experts from animal sport doping control laboratories around the world, before being ratified by the AORC membership. They provide guidance on all stages of animal hair analysis, from sample collection, through sample pre-treatment and extraction and onto instrumental analysis.

2.
Drug Test Anal ; 16(2): 199-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37337992

RESUMO

Many innovative biotherapeutics have been marketed in the last decade. Monoclonal antibodies (mAbs) and Fc-fusion proteins (Fc-proteins) have been developed for the treatment of diverse diseases (cancer, autoimmune diseases, and inflammatory disorders) and now represent an important part of targeted therapies. However, the ready availability of such biomolecules, sometimes characterized by their anabolic, anti-inflammatory, or erythropoiesis-stimulating properties, raises concerns about their potential misuse as performance enhancers for human and animal athletes. In equine doping control laboratories, a method has been reported to detect the administration of a specific human biotherapeutic in equine plasma; but no high-throughput method has been described for the screening without any a priori knowledge of human or murine biotherapeutic. In this context, a new broad-spectrum screening method involving UHPLC-HRMS/MS has been developed for the untargeted analysis of murine or human mAbs and related macromolecules in equine plasma. This approach, consisting of a "pellet digestion" strategy performed in a 96-well plate, demonstrates reliable performances at low concentrations (pmol/mL range) with high-throughput capability (≈100 samples/day). Targeting species-specific proteotypic peptides located within the constant parts of mAbs enables the "universal" detection of human biotherapeutics only by monitoring 10 peptides. As proof of principle, this strategy successfully detected different biotherapeutics in spiked plasma samples, and allowed, for the first time, the detection of a human mAb up to 10 days after a 0.12 mg/kg administration to a horse. This development will expand the analytical capabilities of horse doping control laboratories towards protein-based biotherapeutics with adequate sensitivity, throughput, and cost-effectiveness.


Assuntos
Anticorpos Monoclonais , Dopagem Esportivo , Cavalos , Animais , Humanos , Camundongos , Cromatografia Líquida de Alta Pressão/métodos , Dopagem Esportivo/prevenção & controle , Peptídeos
3.
Drug Test Anal ; 16(2): 112-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37264746

RESUMO

Boldenone is an anabolic-androgenic steroid (AAS) that is prohibited in equine sports. However, in certain situations, it is endogenous, potentially formed by the microbes in urine. An approach to the differentiation based on the detection of the biomarkers Δ1-progesterone, 20(S)-hydroxy-Δ1-progesterone and 20(S)-hydroxyprogesterone was assessed, and their concentrations were monitored in the urine of untreated female horses (n = 291) alongside boldenone, boldienone, testosterone and androstenedione. Using an ultra-sensitive analytical method, boldenone (256 ± 236 pg/mL, n = 290) and the biomarkers (Δ1-progesterone up to 57.6 pg/mL, n = 8; 20(S)-hydroxy-Δ1-progesterone 85.3 ± 181 pg/mL, n = 130; 20(S)-hydroxyprogesterone 43.5 ± 92.1 pg/mL, n = 158) were detected at low concentrations. The ex vivo production of Δ1-steroids was artificially induced following the storage of urine samples at room temperature for 7 days in order to assess the concentrations and ratios of the monitored steroids. The administration of inappropriately stored feed source also resulted in an increase in 20(S)-hydroxy-Δ1-progesterone concentrations and the biomarker ratios. Using the results from different datasets, an approach to differentiation was developed. In situations where the presence of boldenone exceeds a proposed action limit of 5 ng/mL, the presence of the biomarkers would be investigated. If Δ1-progesterone is above 50 pg/mL or if 20(S)-hydroxy-Δ1-progesterone is above 100 pg/mL with the ratio of 20(S)-hydroxy-Δ1-progesterone:20(S)-hydroxyprogesterone greater than 5:1, then this would indicate ex vivo transformation or consumption of altered feed rather than steroid administration. There remains a (small) possibility of a false negative result, but the model increases confidence that adverse analytical findings reported in female horses are caused by AAS administrations.


Assuntos
Anabolizantes , Dopagem Esportivo , Cavalos , Animais , Feminino , Progesterona , Anabolizantes/urina , Testosterona/urina , Esteroides , Hidroxiprogesteronas , Biomarcadores
4.
Drug Test Anal ; 15(4): 458-464, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36482504

RESUMO

Nowadays, numerous websites attempt to commercialize over the internet various products, regardless of the lack of approval by the EMA or the FDA either for human or veterinary use. These products are often produced after aborted drug development due to insufficient or deleterious biological effects, synthesized based on natural products, or only based on scientific literature. However, the administration of such products is dangerous, considering the lack of official control over the production of these substances and the absence of approval by health authorities. In this short communication, we provide an extensive analysis of three misbranded and adulterated products sold over the internet named TB500, TB1000, and SGF1000. We confirm that the content of TB500/TB1000 products is not systematically consistent with it's former descriptions, but also that SGF1000 is mainly composed of sheep extracellular matrix (ECM) and blood proteins, and the signal corresponding to the purported growth promoters is excessively diluted.


Assuntos
Aprovação de Drogas , Estados Unidos , Humanos , Animais , Ovinos , Preparações Farmacêuticas , United States Food and Drug Administration
5.
Drug Test Anal ; 14(5): 887-901, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35178884

RESUMO

Boldenone is an anabolic-androgenic steroid that is prohibited in equine sports. However, in certain situations, it is endogenous or is believed to be formed by microbes in urine, and therefore, an approach for the differentiation is required. Following the identification of Δ1-progesterone and 20(S)-hydroxy-Δ1-progesterone as potential biomarkers of microbial activity, the presence of six steroids was investigated in the postrace urine of castrated male horses (geldings, n = 158). In line with endogenous findings from several other species when ultrasensitive methods are employed, boldenone was detected at low concentrations in all urine samples (27.0-1330 pg/ml). Furthermore, testosterone and androstenedione were detected in 157 samples (≤12,400 and 944 pg/ml, respectively), boldienone in two samples (≤22.0 pg/ml) and 20(S)-hydroxy-Δ1-progesterone in 20 samples (≤66.0 pg/ml). Δ1-Progesterone was not detected in any population samples analysed on arrival at the laboratory. The ex vivo transformation of boldienone, boldenone, androstenedione, Δ1-progesterone and 20(S)-hydroxy-Δ1-progesterone was induced following the storage of urine samples at room temperature for 7 days but not after refrigeration. Because the administration of inappropriately stored feed sources also resulted in an increase in 20(S)-hydroxy-Δ1-progesterone concentrations, a biomarker approach to distinguish steroid administrations was proposed. In situations where the presence of boldenone would exceed a proposed action limit, the presence of Δ1-progesterone and 20(S)-hydroxy-Δ1-progesterone would be investigated. If either Δ1-progesterone or 20(S)-hydroxy-Δ1-progesterone would exceed 50 and 100 pg/ml, respectively, for instance, then this would indicate ex vivo transformation or consumption of altered feed rather than steroid administration.


Assuntos
Anabolizantes , Dopagem Esportivo , Anabolizantes/urina , Androgênios , Androstenodiona , Animais , Cavalos , Masculino , Progesterona , Esteroides , Testosterona/análogos & derivados , Testosterona/urina
6.
Drug Test Anal ; 14(5): 864-878, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35001538

RESUMO

In order to overcome the challenge associated with the screening of Anabolic-Androgenic Steroids abuses in animal competitions, a non-targeted liquid chromatography coupled to high resolution mass spectrometry based metabolomics approach was implemented on equine urine samples to highlight potential biomarkers associated with the administration of such compounds, using testosterone esters as model steroids. A statistical model relying on four potential biomarkers intensity could be defined to predict the status of the samples. With a routine application perspective, the monitoring of the highlighted potential biomarkers was first transferred into high-throughput liquid chromatography-selected reaction monitoring (LC-SRM). The model's performances and robustness of the approach were preserved and providing a first demonstration of metabolomics-based biomarkers integration within a targeted workflow using common benchtop MS instrumentation. In addition, with a view to the widespread implementation of such biomarker-based tools, we have transferred the method to a second laboratory with similar instrumentation. This proof of concept allows the development and application of biomarker-based strategies to meet current doping control needs.


Assuntos
Dopagem Esportivo , Testosterona , Animais , Biomarcadores/urina , Cavalos , Laboratórios , Metabolômica/métodos , Esteroides/análise , Congêneres da Testosterona
7.
Drug Test Anal ; 14(2): 252-261, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34634175

RESUMO

Ciclesonide (CIC) is the first inhaled highly potent corticosteroid that does not cause any cortisol suppression. It has been developed for the treatment of asthma in human and more recently in equine. CIC is the active compound of Aservo® EquiHaler® (Boehringer Ingelheim Vetmedica GmbH), the pre-filled inhaler generating a medicated mist based on Soft Mist™ technology. This prodrug is rapidly converted to desisobutyryl-ciclesonide (des-CIC), the main pharmacologically active compound. Due to its anti-inflammatory properties, CIC is prohibited for use in horse competitions. To set up an appropriate control, the determination of detection times and screening limits are required. Therefore, a highly sensitive analytical method based on supported liquid extraction (SLE) combined with liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) was developed to detect CIC and its active metabolite des-CIC in plasma. The lower limit of detection of CIC and des-CIC was approximately 1 pg/ml in plasma. After a pilot study conducted on a single horse at the recommended dose (eight actuations twice daily corresponding to 5.5 mg/day for the first 5 days, followed by 12 actuations once daily corresponding to 4.1 mg/day in the last 5 days), the same protocol was applied in the main study using six horses. In all horses, CIC and des-CIC levels were less than 5 and 10 pg/ml, respectively, at 36 h after the end of the administration. The outcome of this risk assessment study should be useful to draw any recommendations for horse competitions.


Assuntos
Pregnenodionas , Pró-Fármacos , Animais , Cromatografia Líquida/métodos , Cavalos , Projetos Piloto , Pregnenodionas/análise
8.
Drug Test Anal ; 14(5): 953-962, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33860991

RESUMO

Short half-life doping substances are, quickly eliminated and therefore difficult to control with traditional analytical chemistry methods. Indirect methods targeting biomarkers constitute an alternative to extend detection time frames in doping control analyses. Gene expression analysis (i.e., transcriptomics) has already shown interesting results in both humans and equines for erythropoietin (EPO), growth hormone (GH), and anabolic androgenic steroid (AAS) misuses. In humans, circulating cell-free microRNAs in plasma were described as new potential biomarkers for control of major doping agent (MDA) abuses. The development of a quantitative polymerase chain reaction (qPCR) method allowing the detection of circulating miRNAs was carried out on equine plasma collected on different type of tubes (EDTA, lithium-heparin [LiHep]). Although analyzing plasma collected in EDTA tubes is a standard method in molecular biology, analyzing plasma collected in LiHep tubes is challenging, as heparin is a reverse transcription (RT) and a PCR inhibitor. Different strategies were considered, and attention was paid on both miRNAs extraction quality and detection sensitivity. The detection of endogenous circulating miRNAs was performed and compared between the different types of tubes. In parallel, homologs of human miRNAs characterized as potential biomarkers of doping were sought in equine databases. The miRNA eca-miR-144, described as potential erythropoiesis stimulating agents (ESAs) administration candidate biomarker was retained and assessed in equine post-administration samples. The results about the qPCR method development and optimization are exposed as well as the equine miRNAs detection. To our knowledge, this work is the first study and the proof of concept of circulating miRNAs detection in plasma dedicated to equine doping control.


Assuntos
Hematínicos , MicroRNAs , Animais , Biomarcadores , Ácido Edético , Heparina , Cavalos/genética , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real/métodos
9.
Anal Chem ; 93(47): 15590-15596, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34791882

RESUMO

Synthetic androgenic anabolic steroids (AAS) are banned compounds and considered as major threats by both racing and sports international authorities. Hence, doping control laboratories are continually looking into analytical improvements to increase their detection capabilities, notably by means of emerging technologies. To enhance analytical performances for the detection of synthetic AAS such as stanozolol, specific chromatographic procedures have been developed using recent quaternary liquid chromatography technology originally designed for high-throughput standardized proteomics connected to mass spectrometry. Applying the newly designed elution procedures described in this paper to the analyses of stanozolol and its metabolites in complex matrixes revealed improved sensitivity compared to previously described high-throughput methods. Indeed, we report the consistent and reliable detection of 16ß-hydroxy-stanozolol down to 10 pg/mL in equine urine and being detectable up-to 3 months after a microdosing administration. Furthermore, a five months long elimination of stanozolol and its metabolites could be monitored on horse mane sections after a single dose administration. Our work highlights novel solutions to detect AAS with improved sensitivity. The application of such developments constitutes new landmarks for doping control laboratories and could be extended to other targeted compounds in residue analysis, toxicology, and metabolomics. Based on this work, the developed chromatographic method is now freely available within the Evosep Plus program.


Assuntos
Anabolizantes , Dopagem Esportivo , Animais , Cavalos , Esteroides , Detecção do Abuso de Substâncias , Espectrometria de Massas em Tandem , Congêneres da Testosterona
10.
Drug Test Anal ; 13(8): 1527-1534, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33870655

RESUMO

Clodronate is a non-nitrogen-containing bisphosphonate drug approved in equine veterinary medicine. Clodronate is prohibited for use in competition horses; therefore, to set up an appropriate control, detection times and screening limits are required. The quantitative method in plasma consisted of addition of chloromethylene diphosphonic acid as internal standard. Automated sample preparation comprised a solid phase extraction with weak anion exchange properties on microplate. After methylation of the residue with trimethyl orthoacetate, analysis was conducted by high-performance liquid chromatography-tandem mass spectrometry. Using a weighting factor of 1/(concentration)2 , good linearity was observed in the range of 1 to 500 ng/ml, with low limits of detection and quantification of 0.5 and 1 ng/ml, respectively. Precision and accuracy determined at four concentrations were satisfactory, with an error percentage less than 15%. Absence of carry-over and good stability of clodronic acid in plasma after a long-term storage at -20°C were verified. The method was successfully applied to the quantification of clodronic acid in plasma samples from horses administered with a single intramuscular administration of Osphos® at a mean dose of 1.43 ± 0.07 mg/kg. The observed detection time will be verified in a clinical population study conducted in diseased horses.


Assuntos
Analgésicos não Narcóticos/sangue , Ácido Clodrônico/sangue , Cavalos/sangue , Animais , Automação , Cromatografia Líquida de Alta Pressão , Dopagem Esportivo , Injeções Intramusculares , Masculino , Reprodutibilidade dos Testes , Extração em Fase Sólida , Espectrometria de Massas em Tandem
11.
Drug Test Anal ; 13(6): 1191-1202, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33547737

RESUMO

According to international sport institutions, the use of peroxisome proliferator activated receptor (PPAR)-δ agonists is forbidden at any time in athlete career due to their capabilities to increase physical and endurance performances. The (PPAR)-δ agonist GW501516 is prohibited for sale but is easily available on internet and can be used by cheaters. In the context of doping control, urine is the preferred matrix because of the non-invasive nature of sampling and providing broader exposure detection times to forbidden molecules but often not detected under its native form due to the organism's metabolism. Even if urinary metabolism of G501516 has been extensively studied in human subjects, knowledge on GW501516 metabolism in horses remains limited. To fight against doping practices in horses' races, GW501516 metabolism has to be studied in horse urine to identify and characterize the most relevant target metabolites to ensure an efficient doping control. In this article, in vitro and in vivo experiments have been conducted using horse S9 liver microsome fractions and horse oral administration route, respectively. These investigations determined that the detection of GW501516 must be performed in urine on its metabolites because the parent molecule was extremely metabolized. To maximize analytical method sensitivity, the extraction conditions have been optimized. In accordance with these results, a qualitative analytical method was validated to detect the abuse of GW501516 based on its most relevant metabolites in urine. This work enabled the Laboratoire des Courses Hippiques (LCH) to highlight two cases of illicit administration of this forbidden molecule in post-race samples.


Assuntos
Dopagem Esportivo/prevenção & controle , Detecção do Abuso de Substâncias/métodos , Tiazóis/análise , Administração Oral , Animais , Feminino , Cavalos , Masculino , Microssomos Hepáticos/metabolismo , PPAR delta/agonistas , Tiazóis/metabolismo , Tiazóis/urina
13.
Anal Chem ; 92(19): 13155-13162, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32924440

RESUMO

With recent advances in analytical chemistry, liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) has become an essential tool for metabolite discovery and detection. Even if most of the common drug transformations have already been extensively described, manual search of drug metabolites in LC-HRMS/MS datasets is still a common practice in toxicology laboratories, complicating metabolite discovery. Furthermore, the availability of free open-source software for metabolite discovery is still limited. In this article, we present MetIDfyR, an open-source and cross-platform R package for in silico drug phase I/II biotransformation prediction and mass-spectrometric data mining. MetIDfyR has proven its efficacy for advanced metabolite identification in semi-complex and complex mixtures in in vitro or in vivo drug studies and is freely available at github.com/agnesblch/MetIDfyR.


Assuntos
Preparações Farmacêuticas/análise , Bibliotecas de Moléculas Pequenas/análise , Quimioinformática , Cromatografia Líquida , Estrutura Molecular , Preparações Farmacêuticas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Espectrometria de Massas em Tandem
14.
Drug Test Anal ; 12(10): 1452-1461, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32615643

RESUMO

Bisphosphonates are prohibited drugs according to Article 6 of the International Agreement on Breeding, Racing and Wagering of the International Federation of Horseracing Authorities (IFHA) and the International Equestrian Federation (FEI). These compounds are used for the treatment of lameness, navicular and bone diseases in horses and are divided into two groups: non-nitrogen-containing bisphosphonate drugs (e.g. clodronic acid) and nitrogen-containing bisphosphonate drugs (e.g. zoledronic acid). Their hydrophilic properties and the high affinity for the bone matrix make the control of their use quite difficult. Current analytical strategies to detect such compounds often rely on a solid phase extraction (SPE) followed by detection by means of UHPLC-MS/MS after methylation with chemical reagents. To improve the analysis throughput and to eliminate the need for chemical derivatization, an innovative 96-well SPE followed by ion chromatography-mass spectrometry was developed. Analyses are conducted on an ICS-6000 HPIC system coupled to a TSQ Altis™ (Thermo Scientific™). The use of a 96-well SPE allowed 5-fold sample increase and a 6-fold throughput improvement. While preliminary results conducted on horse plasma exhibited similar performances to the method for the detection of non-nitrogen-containing bisphosphonates, the analytical performances of nitrogen-containing bisphosphonates were greatly improved.


Assuntos
Conservadores da Densidade Óssea/sangue , Difosfonatos/sangue , Cavalos/sangue , Animais , Cromatografia Líquida de Alta Pressão , Dopagem Esportivo , Extração em Fase Sólida , Espectrometria de Massas em Tandem
15.
Drug Test Anal ; 12(6): 763-770, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31984676

RESUMO

Recombinant human erythropoietin (rHuEPO) belongs to the therapeutic class of erythropoiesis stimulating agents (ESAs) due to its implication in the creation pathway of red blood cells and thus enhancement of oxygenation. Because of this bioactivity, rHuEPO has been considered as a major doping agent in sports competitions for decades. Over the years, doping control laboratories designed several analytical strategies applied to human and animal samples to highlight any misuse. Even though multiple analytical approaches have been reported, none has yet been dedicated to racing camels. Here, we describe an analytical strategy to test camel plasma samples at screening using an ELISA assay and a targeted nano-liquid chromatography-high-resolution tandem mass spectrometry for confirmatory analysis. The method was validated and has been successfully applied to post-race samples, allowing the detection of a positive case of rHuEPO administration.


Assuntos
Camelus/metabolismo , Dopagem Esportivo/métodos , Eritropoetina/análise , Detecção do Abuso de Substâncias/métodos , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Eritropoetina/química , Humanos , Espectrometria de Massas , Proteínas Recombinantes/análise , Reprodutibilidade dos Testes , Esportes
16.
Drug Test Anal ; 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29745032
17.
Drug Test Anal ; 10(5): 880-885, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29232492

RESUMO

Cobra (Naja naja kaouthia) venom contains a toxin called α-cobratoxin (α-Cbtx) containing 71 amino acids (MW 7821 Da) with a reported analgesic power greater than morphine. In 2013, the first analytical method for the detection of α-Cbtx in equine plasma was developed by Bailly-Chouriberry et al, allowing the confirmation of the presence of α-Cbtx at low concentrations (1-5 ng/mL or 130-640 fmol/mL) in plasma samples. To increase the method sensitivity and therefore to improve the detection of α-Cbtx in post-administration plasma samples, a nano-liquid chromatography-mass spectrometry/high resolution mass spectrometry (nLC-MS/HRMS) method was developed. This new method allowed us to confirm the presence of α-Cbtx in plasma samples spiked at 100 pg/mL (12.8 fmol/mL) and the detection of α-Cbtx was obtained in plasma samples collected 72 hours post-administration (50 pg/mL or 6.4 fmol/mL) which was defined as the limit of detection (LOD). The presented method is 20-fold more sensitive compared to the method previously described.


Assuntos
Analgésicos/sangue , Proteínas Neurotóxicas de Elapídeos/sangue , Cavalos/sangue , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida/métodos , Dopagem Esportivo , Limite de Detecção
18.
J Chromatogr A ; 1521: 90-99, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-28941809

RESUMO

Erythropoiesis Stimulating Agents (ESAs) were developed for therapeutic purposes to stimulate red blood cell (RBC) production. Consequently, tissue oxygenation is enhanced as athlete's endurance and ESAs misuse now benefits doping. Our hypothesis is that most of ESAs should have similar mechanisms and thus have the same effects on metabolism. Studying the metabolome variations could allow suspecting the use of any ESAs with a single method by targeting their effects. In this objective, a metabolomic study was carried out on 3 thoroughbred horses with a single administration of 4.2µg/kg of Mircera®, also called Continuous Erythropoiesis Receptor Activator (CERA). Blood and urine samples were collected from D-17 to D+74 and haematological parameters were followed throughout the study as plasmatic CERA concentration (ELISA). Urine and plasma metabolic fingerprints were recorded by Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-HRMS) in positive and negative mode. After preprocessing steps, normalized data were analyzed by multivariate statistics to build OPLS models. Hemoglobin concentration and hematocrit showed a significant increase after CERA administration unlike reticulocytes. CERA concentration showed a high intensity peak and then a slow decrease until becoming undetectable after D+31. Models built with multivariate statistics allow a discrimination between pre and post-administration plasma and urine samples until 74days after administration, i.e. 43days longer than ELISA method. By reducing and studying variables (ions), some potential candidate biomarkers were found.


Assuntos
Cromatografia Líquida , Dopagem Esportivo/métodos , Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Cavalos , Espectrometria de Massas , Metaboloma/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Animais , Eritropoetina/sangue , Eritropoetina/urina , Hematínicos/sangue , Hematínicos/farmacologia , Hematínicos/urina , Metabolômica
19.
Drug Test Anal ; 9(9): 1448-1455, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28382793

RESUMO

The improvement of doping control is an ongoing race. Techniques to fight doping are usually based on the direct detection of drugs or their metabolites by analytical methods such as chromatography hyphenated to mass spectrometry after ad hoc sample preparation. Nowadays, omic methods constitute an attractive development and advances have been achieved particularly by application of molecular biology tools for detection of anabolic androgenic steroids (AAS), erythropoiesis-stimulating agent (ESA), or to control human growth hormone misuses. These interesting results across different animal species have suggested that modification of gene expression offers promising new methods of improving the window of detection of banned substances by targeting their effects on blood cell gene expression. In this context, the present study describes the possibility of using a modified version of the dedicated Human IVD (in vitro Diagnostics) PAXgene® Blood RNA Kit for horse gene expression analysis in blood collected on PAXgene® tubes applied to the horse biological passport. The commercial kit was only approved for human blood samples and has required an optimization of specific technical requirements for equine blood samples. Improvements and recommendations were achieved for sample collection, storage and RNA extraction procedure. Following these developments, RNA yield and quality were demonstrated to be suitable for downstream gene expression analysis by qPCR techniques. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Perfilação da Expressão Gênica , RNA , Animais , Dopagem Esportivo , Cavalos , Humanos , RNA/química , Manejo de Espécimes
20.
Drug Test Anal ; 9(9): 1363-1371, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28407446

RESUMO

Acadesine, 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside, commonly known as AICAR, is a naturally occurring adenosine monophosphate-activated protein kinase (AMPK) activator in many mammals, including humans and horses. AICAR has attracted considerable attention recently in the field of doping control because of a study showing the enhancement of endurance performance in unexercised or untrained mice, resulting in the term 'exercise pill'. Its use has been classified as gene doping by the World Anti-Doping Agency (WADA), and since it is endogenous, it may only be possible to control deliberate administration of AICAR to racehorses after establishment of an appropriate threshold. Herein we report our studies of AICAR in post-race equine urine and plasma samples including statistical studies of AICAR concentrations determined from 1,470 urine samples collected from thoroughbreds and standardbreds and analyzed in Australia, France, and Hong Kong. Quantification methods in equine urine and plasma using liquid chromatography-mass spectrometry were developed by the laboratories in each country. An exchange of spiked urine and plasma samples between the three countries was conducted, confirming no significant differences in the methods. However, the concentration of AICAR in plasma was found to increase upon haemolysis of whole blood samples, impeding the establishment of a suitable threshold in equine plasma. A possible urine screening cut-off at 600 ng/mL for the control of AICAR in racehorses could be considered for adoption. Application of the proposed screening cut-off to urine samples collected after intravenous administration of a small dose (2 g) of AICAR to a mare yielded a short detection time of approximately 4.5 h. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Dopagem Esportivo/prevenção & controle , Ribonucleosídeos/análise , Ribonucleotídeos/análise , Espectrometria de Massas em Tandem/métodos , Aminoimidazol Carboxamida/análise , Aminoimidazol Carboxamida/química , Aminoimidazol Carboxamida/metabolismo , Animais , Austrália , Cromatografia Líquida , Cavalos , Humanos , Ribonucleosídeos/química , Ribonucleosídeos/metabolismo , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , Urinálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...