Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; : e14197, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958262

RESUMO

AIM: How the cerebral metabolic rates of oxygen and glucose utilization (CMRO2 and CMRGlc, respectively) are affected by alterations in arterial PCO2 (PaCO2) is equivocal and therefore was the primary question of this study. METHODS: This retrospective analysis involved pooled data from four separate studies, involving 41 healthy adults (35 males/6 females). Participants completed stepwise steady-state alterations in PaCO2 ranging between 30 and 60 mmHg. The CMRO2 and CMRGlc were assessed via the Fick approach (CBF × arterial-internal jugular venous difference of oxygen or glucose content, respectively) utilizing duplex ultrasound of the internal carotid artery and vertebral artery to calculate cerebral blood flow (CBF). RESULTS: The CMRO2 was altered by 0.5 mL × min-1 (95% CI: -0.6 to -0.3) per mmHg change in PaCO2 (p < 0.001) which corresponded to a 9.8% (95% CI: -13.2 to -6.5) change in CMRO2 with a 9 mmHg change in PaCO2 (inclusive of hypo- and hypercapnia). The CMRGlc was reduced by 7.7% (95% CI: -15.4 to -0.08, p = 0.045; i.e., reduction in net glucose uptake) and the oxidative glucose index (ratio of oxygen to glucose uptake) was reduced by 5.6% (95% CI: -11.2 to 0.06, p = 0.049) with a + 9 mmHg increase in PaCO2. CONCLUSION: Collectively, the CMRO2 is altered by approximately 1% per mmHg change in PaCO2. Further, glucose is incompletely oxidized during hypercapnia, indicating reductions in CMRO2 are either met by compensatory increases in nonoxidative glucose metabolism or explained by a reduction in total energy production.

2.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R46-R53, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38766773

RESUMO

Despite elite human free divers achieving incredible feats in competitive free diving, there has yet to be a study that compares consummate divers, (i.e. northern elephant seals) to highly conditioned free divers (i.e., elite competitive free-diving humans). Herein, we compare these two diving models and suggest that hematological traits detected in seals reflect species-specific specializations, while hematological traits shared between the two species are fundamental mammalian characteristics. Arterial blood samples were analyzed in elite human free divers (n = 14) during a single, maximal volitional apnea and in juvenile northern elephant seals (n = 3) during rest-associated apnea. Humans and elephant seals had comparable apnea durations (∼6.5 min) and end-apneic arterial Po2 [humans: 40.4 ± 3.0 mmHg (means ± SE); seals: 27.1 ± 5.9 mmHg; P = 0.2]. Despite similar increases in arterial Pco2 (humans: 33 ± 5%; seals: 16.3 ± 5%; P = 0.2), only humans experienced reductions in pH from baseline (humans: 7.45 ± 0.01; seals: 7.39 ± 0.02) to end apnea (humans: 7.37 ± 0.01; seals: 7.38 ± 0.02; P < 0.0001). Hemoglobin P50 was greater in humans compared to elephant seals (29.9 ± 1.5 and 28.7 ± 0.6 mmHg, respectively; P = 0.046). Elephant seals overall had higher carboxyhemoglobin (COHb) levels (5.9 ± 2.6%) compared to humans (0.8 ± 1.2%; P < 0.0001); however, following apnea, COHb was reduced in seals (baseline: 6.1 ± 0.3%; end apnea: 5.6 ± 0.3%) and was slightly elevated in humans (baseline: 0.7 ± 0.1%; end apnea: 0.9 ± 0.1%; P < 0.0002, both comparisons). Our data indicate that during static apnea, seals have reduced hemoglobin P50, greater pH buffering, and increased COHb levels. The differences in hemoglobin P50 are likely due to the differences in the physiological environment between the two species during apnea, whereas enhanced pH buffering and higher COHb may represent traits selected for in elephant seals.NEW & NOTEWORTHY This study uses similar methods and protocols in elite human free divers and northern elephant seals. Using highly conditioned divers (elite free-diving humans) and highly adapted divers (northern elephant seals), we explored which hematological traits are fundamentally mammalian and which may have been selected for. We found differences in P50, which may be due to different physiological environments between species, while elevated pH buffering and carbon monoxide levels might have been selected for in seals.


Assuntos
Apneia , Mergulho , Focas Verdadeiras , Animais , Focas Verdadeiras/sangue , Humanos , Mergulho/fisiologia , Apneia/sangue , Apneia/fisiopatologia , Masculino , Adulto , Feminino , Especificidade da Espécie , Hemoglobinas/metabolismo , Adulto Jovem , Dióxido de Carbono/sangue , Oxigênio/sangue
3.
Plants (Basel) ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794468

RESUMO

AIM: Plants distributed between southern Taiwan and the north of the Philippines are spread among numerous small islands in an area crossed by the powerful Kuroshio current. Oceanic currents can be effective seed-dispersal agents for coastal plant species. Moreover, the Luzon Strait is an area prone to tropical cyclones. The aim of this study is to look at the dispersal capability of an endangered coastal plant species, the Mearns fig (Ficus pedunculosa var. mearnsii), using both experimental and population genetics methods. LOCATION: Southern Taiwan, the Philippines, and the islands between Luzon and Taiwan Island. METHODS: This study combined two types of analysis, i.e., buoyancy experiments on syconia and double digest restriction-associated DNA sequencing (ddRAD), to analyze the population genetics of the Mearns fig. RESULTS: We first discovered that mature Mearns fig syconia could float in seawater. They have a mean float duration of 10 days to a maximum of 21 days. Germination rates varied significantly between Mearns fig seeds that had undergone different durations of flotation treatment. Population genetic analysis shows a high degree of inbreeding among various Mearns fig populations. Moreover, no isolation by distance was found between the populations and individuals. MAIN CONCLUSIONS: From our analysis of the genetic structure of the Mearns fig populations, we can clearly highlight the effect of the Kuroshio oceanic current on the seed dispersal of this fig tree. Comprehensive analysis has shown that Mearns fig seeds are still viable before the mature syconium sinks into the seawater, and so they could use the Kuroshio Current to float to the current population locations in Taiwan.

4.
J Physiol ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348606

RESUMO

We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.

5.
PLoS One ; 19(1): e0290439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165887

RESUMO

Recent studies have challenged assumptions about the classic fig-fig wasp pollination mutualism model, suggesting that further investigation into the receptive phase of fig development is needed. This study assessed the pollination mechanisms of Ficus septica in southern Taiwan and identified two species of wasps as the primary pollinators. Machine learning was used to identify and rank the factors that explain the relative abundance of these wasps. The two wasp species showed the highest level of cohabitation ever reported in the literature, with three-quarters of the figs containing multiple foundresses. The study also reported re-emerged foundresses and a 10% ratio of pollinated figs without foundresses. Local factors, such as the sampling period and tree identity, were the best predictors of the presence and number of each foundress species, with fig size also affecting the number of foundresses. The study highlights the variability in pollinator abundance between figs, crops, and trees. It also shows that the local environment of the trees and the availability of figs are crucial factors in determining which figs the pollinator wasps choose. These findings challenge assumptions about the classic mutualism model and suggest that long-term surveys are needed to estimate the relative contributions of each partner and provide data for evolutionary and ecological models. This study also provides valuable insights into the factors that affect the abundance and interactions of pollinator wasps during the receptive phase of fig development, with implications for understanding the behaviour of pollinating wasps and advancing our knowledge of population dynamics in Ficus species.


Assuntos
Ficus , Vespas , Animais , Evolução Biológica , Simbiose , Polinização , Árvores
7.
J Physiol ; 601(24): 5601-5616, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975212

RESUMO

Passive hyperthermia causes cerebral hypoperfusion primarily from heat-induced respiratory alkalosis. However, despite the cerebral hypoperfusion, it is possible that the mild alkalosis might help to attenuate cerebral inflammation. In this study, the cerebral exchange of extracellular vesicles (microvesicles), which are known to elicit pro-inflammatory responses when released in conditions of stress, were examined in hyperthermia with and without respiratory alkalosis. Ten healthy male adults were heated passively, using a warm water-perfused suit, up to core temperature + 2°C. Blood samples were taken from the radial artery and internal jugular bulb. Microvesicle concentrations were determined in platelet-poor plasma via cells expressing CD62E (activated endothelial cells), CD31+ /CD42b- (apoptotic endothelial cells), CD14 (monocytes) and CD45 (pan-leucocytes). Cerebral blood flow was measured via duplex ultrasound of the internal carotid and vertebral arteries to determine cerebral exchange kinetics. From baseline to poikilocapnic (alkalotic) hyperthermia, there was no change in microvesicle concentration from any cell origin measured (P-values all >0.05). However, when blood CO2 tension was normalized to baseline levels in hyperthermia, there was a marked increase in cerebral uptake of microvesicles expressing CD62E (P = 0.028), CD31+ /CD42b- (P = 0.003) and CD14 (P = 0.031) compared with baseline, corresponding to large increases in arterial but not jugular venous concentrations. In a subset of seven participants who underwent hypercapnia and hypocapnia in the absence of heating, there was no change in microvesicle concentrations or cerebral exchange, suggesting that hyperthermia potentiated the CO2 /pH-mediated cerebral uptake of microvesicles. These data provide insight into a potential beneficial role of respiratory alkalosis in heat stress. KEY POINTS: The hyperthermia-induced hyperventilatory response is observed in most humans, despite causing potentially harmful reductions in cerebral blood flow. We tested the hypothesis that the respiratory-induced alkalosis is associated with lower circulating microvesicle concentrations, specifically in the brain, despite the reductions in blood flow. At core temperature + 2°C with respiratory alkalosis, microvesicles derived from endothelial cells, monocytes and leucocytes were at concentrations similar to baseline in the arterial and cerebral venous circulation, with no changes in cross-brain microvesicle kinetics. However, when core temperature was increased by 2°C with CO2 /pH normalized to resting levels, there was a marked cerebral uptake of microvesicles derived from endothelial cells and monocytes. The CO2 /pH-mediated alteration in cerebral microvesicle uptake occurred only in hyperthermia. These new findings suggest that the heat-induced hyperventilatory response might serve a beneficial role by preventing potentially inflammatory microvesicle uptake in the brain.


Assuntos
Alcalose Respiratória , Hipertermia Induzida , Adulto , Humanos , Masculino , Hipocapnia , Células Endoteliais/fisiologia , Dióxido de Carbono , Hiperventilação , Circulação Cerebrovascular/fisiologia
8.
High Alt Med Biol ; 24(3): 223-229, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37504958

RESUMO

Brewster, L. Madden, Anthony R. Bain, Vinicius P. Garcia, Noah M. DeSouza, Michael M. Tymko, Jared J. Greiner, and Philip N. Ainslie. Global REACH 2018: high altitude-related circulating extracellular microvesicles promote a proinflammatory endothelial phenotype in vitro. High Alt Med Biol. 24:223-229, 2023. Introduction: Ascent to high altitude (HA) can induce vascular dysfunction by promoting a proinflammatory endothelial phenotype. Circulating microvesicles (MVs) can mediate the vascular endothelium and inflammation. It is unclear whether HA-related MVs are associated with endothelial inflammation. Objectives: We tested the hypothesis that MVs derived from ascent to HA induce a proinflammatory endothelial phenotype. Methods: Ten healthy adults (8 M/2 F; age: 28 ± 2 years) residing at sea level (SL) were studied before and 4-6 days after rapid ascent to HA (4,300 m). MVs were isolated and enumerated from plasma by centrifugation and flow cytometry. Human umbilical vein endothelial cells were treated with MVs collected from each subject at SL (MV-SL) and at HA (MV-HA). Results: Circulating MV number significantly increased at HA (26,637 ± 3,315 vs. 19,388 ± 1,699). Although intracellular expression of total nuclear factor kappa beta (NF-κB; 83.4 ± 6.7 arbitrary units [AU] vs. 90.2 ± 6.9 AU) was not affected, MV-HA resulted in ∼55% higher (p < 0.05) active NF-κB (129.6 ± 19.8 AU vs. 90.7 ± 10.5 AU) expression compared with MV-SL. In addition, MV-HA induced higher interleukin (IL)-6 (63.9 ± 3.9 pg/ml vs. 53.3 ± 3.6 pg/ml) and IL-8 (140.2 ± 3.6 pg/ml vs. 120.7 ± 3.8 pg/ml) release compared with MV-SL, which was blunted with NF-κB blockade. Conclusions: Circulating extracellular MVs increase at HA and induce endothelial inflammation, potentially contributing to altitude-related vascular dysfunction.


Assuntos
Altitude , Células Endoteliais , Adulto , Humanos , NF-kappa B , Interleucina-6 , Fenótipo , Inflamação
9.
Insects ; 14(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37233065

RESUMO

Non-pollinating fig wasps (NPFWs), particularly long-ovipositored Sycoryctina wasps, exhibit a high species specificity and exert complex ecological effects on the obligate mutualism between the plant genus Ficus and pollinating fig wasps. Apocrypta is a genus of NPFWs that mostly interacts with the Ficus species under the subgenus Sycomorus, and the symbiosis case between Apocrypta and F. pedunculosa var. mearnsii, a Ficus species under subgenus Ficus, is unique. As fig's internal environments and the wasp communities are distinct between the two subgenera, we addressed the following two questions: (1) Are the parasitism features of the Apocrypta wasp associated with F. pedunculosa var. mearnsii different from those of other congeneric species? (2) Is this Apocrypta species an efficient wasp that lives in its unique host? Our observation revealed that this wasp is an endoparasitic idiobiont parasitoid, as most congeneric species are, but developed a relatively long ovipositor. Furthermore, the relationships of the parasitism rate versus the pollinator number, the fig wall, and the sex ratio of the pollinator, respectively, showed that it possessed a higher parasitism ability than that of other congeners. However, its parasitism rate was low, and thus it was not an efficient wasp in its habitat. This difference between parasitism ability and parasitism rate might be a consequence of its oviposition strategy and the severe habitat conditions. These findings may also provide insights into the mechanism to maintain the interaction between the fig tree and the fig wasp community.

10.
Exp Physiol ; 108(3): 344-352, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621798

RESUMO

NEW FINDINGS: What is the central question of this study? How does passive heat stress and subsequent heat acclimation affect the circulating concentration of extracellular vesicles? What is the main finding and its importance? Passive heat stress increased the circulating concentration of total and platelet extracellular vesicles. Seven days of hot water immersion did not modify the change in circulating concentrations of extracellular vesicles during passive heat stress. ABSTRACT: This retrospective exploratory analysis aimed to improve our understanding of the effect of passive heat stress and subsequent heat acclimation on the circulating concentration of extracellular vesicles (EVs). Healthy young adults (four females and six males, 25 ± 4 years of age, 1.72 ± 0.08 m in height and weighing 71.6 ± 9.0 kg) were heated with a water-perfused suit before and after seven consecutive days of hot water immersion. Pre-acclimation, participants were heated until oesophageal temperature increased to ∼1.4°C above baseline values. Post-acclimation, participants were heated until oesophageal temperature reached the same absolute value as the pre-acclimation visit (∼38.2°C). Venous blood samples were obtained before and at the end of passive heating to quantify plasma concentrations of EVs from all cell types (CSFE+ ), all cell types except erythrocytes (CSFE+ MHCI+ ), platelets (CSFE+ MHCI+ CD41+ ), endothelial cells (CSFE+ MHCI+ CD62e+ ), red blood cells (CSFE+ CD235a+ ) and leucocytes (CSFE+ MHCI+ CD45+ ) via flow cytometry. Passive heat stress increased the concentration of CFSE+ EVs (46,150,000/ml [3,620,784, 88,679,216], P = 0.036), CFSE+ MHCI+ EVs (28,787,500/ml [9,851,127, 47,723,873], P = 0.021) and CSFE+ MHCI+ CD41+ EVs (28,343,500/ml [9,637,432, 47,049,568], P = 0.008). The concentration of CSFE+ MHCI+ CD62e+ EVs (94,230/ml [-55,099, 243,559], P = 0.187), CSFE+ CD235a+ EVs (-1,414/ml [-15,709, 12,882], P = 0.403) or CSFE+ MHCI+ CD45+ EVs (-192,915/ml [-690,166, 304,336], P = 0.828) did not differ during heat stress. The change in circulating EVs during passive heat stress did not differ after heat acclimation (thermal state × acclimation interactions, all P ≥ 0.180). These results demonstrate that passive heat stress increases the circulating concentration of total and platelet EVs and that passive heat acclimation does not alter this increase.


Assuntos
Células Endoteliais , Vesículas Extracelulares , Masculino , Feminino , Adulto Jovem , Humanos , Lactente , Estudos Retrospectivos , Resposta ao Choque Térmico , Aclimatação , Água , Temperatura Alta
11.
Plants (Basel) ; 11(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36235469

RESUMO

The vegetative and reproductive growth of plants provide the basic tempo for an ecosystem, and when species are interdependent, phenology becomes crucial to regulating the quantity and quality of the interactions. In plant-insect interactions, the plants signal the beginning of their reproductive period with visual and chemical cues; however, in the case of Ficus mutualism, the cues are strictly chemical. The volatile organic compounds emitted by a fig species are a unique, specific blend that provides a signal to mutualistic wasps that the figs are receptive for pollination. In this study, we studied both the phenological pattern of Ficus septica in Central Taiwan and its emissions of volatile compounds at receptivity. This dioecious fig species displays a pattern of continuous vegetative and reproductive production all through the year with a decrease in winter. In parallel, the odor blends emitted by male and female trees are similar but with seasonal variations; these are minimal during winter and increase with the size of the wasp population during the favorable season. In addition, the pollinating females cannot distinguish between the male and female summer odor blends. The link between odor similarity, pollinators and intersexual conflict is discussed.

12.
Exp Physiol ; 107(12): 1426-1431, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116111

RESUMO

NEW FINDINGS: What is the central question of this study? Is the plasma concentration of Notch1 extracellular domain altered in response to decreased and increased vascular wall shear stress in the forearm in humans? What is the main finding and its importance? Notch1 extracellular domain is increased with acute increases in antegrade shear rate but does not change with 20 min of decreased shear rate caused by distal forearm occlusion. A novel and integral endothelial mechanosensor in humans that can help explain vascular endothelial adjustments in response to increases in antegrade shear stress was characterized. ABSTRACT: Notch1 has been proposed as a novel endothelial mechanosensor that is central for signalling adjustments in response to changes in vascular wall shear stress. However, there remains no controlled in vivo study in humans. Accordingly, we sought to address the question of whether plasma concentrations of Notch1 extracellular domain (ECD) is altered in response to transient changes in vascular wall shear stress. In 10 young healthy adults (6M/4F), alterations in shear stress were induced by supra-systolic cuff inflation around the wrist. The opposite arm was treated as a time control with no wrist cuff inflation. Plasma was collected from an antecubital vein of both arms at baseline, 20 min of wrist cuff inflation (low shear), as well as 1-2 min (high shear) and 15 min following (recovery) wrist cuff release. The Notch1 ECD was quantified using a commercially available ELISA. Duplex ultrasound was used to confirm alterations in shear stress. In the experimental arm, concentrations of Notch1 ECD remained statistically similar to baseline at all time points except for immediately following cuff release where it was elevated by ∼50% (P = 0.033), coinciding with the condition of high antegrade shear rate. Concentrations of Notch1 ECD remained unchanged in the control arm through all time points. These data indicate that Notch1 is a viable biomarker for quantifying mechanotransduction in response to increased shear stress in humans, and it may underlie the vascular adaptations or mal-adaptations associated with conditions that impact antegrade shear.


Assuntos
Artéria Braquial , Mecanotransdução Celular , Adulto , Humanos , Artéria Braquial/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Estresse Mecânico , Endotélio Vascular/fisiologia , Vasodilatação/fisiologia , Receptor Notch1
13.
J Cereb Blood Flow Metab ; 42(6): 1120-1135, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35061562

RESUMO

Voluntary asphyxia imposed by static apnea challenges blood-brain barrier (BBB) integrity in humans through transient extremes of hypertension, hypoxemia and hypercapnia. In the present study, ten ultra-elite breath-hold divers performed two maximal dry apneas preceded by normoxic normoventilation (NX: severe hypoxemia and hypercapnia) and hyperoxic hyperventilation (HX: absence of hypoxemia with exacerbating hypercapnia) with measurements obtained before and immediately after apnea. Transcerebral exchange of NVU proteins (ELISA, Single Molecule Array) were calculated as the product of global cerebral blood flow (gCBF, duplex ultrasound) and radial arterial to internal jugular venous concentration gradients. Apnea duration increased from 5 m 6 s in NX to 15 m 59 s in HX (P = <0.001) resulting in marked elevations in gCBF and venous S100B, glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase-L1 and total tau (all P < 0.05 vs. baseline). This culminated in net cerebral output reflecting mildly increased BBB permeability and increased neuronal-gliovascular reactivity that was more pronounced in NX due to more severe systemic and intracranial hypertension (P < 0.05 vs. HX). These findings identify the hemodynamic stress to which the apneic brain is exposed, highlighting the critical contribution of hypoxemia and not just hypercapnia to BBB disruption.


Assuntos
Apneia , Hipercapnia , Apneia/metabolismo , Barreira Hematoencefálica/metabolismo , Humanos , Hipóxia/metabolismo , Permeabilidade
14.
J Physiol ; 600(6): 1373-1383, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743333

RESUMO

High altitude-induced hypoxaemia is often associated with peripheral vascular dysfunction. However, the basic mechanism(s) underlying high-altitude vascular impairments remains unclear. This study tested the hypothesis that oxidative stress contributes to the impairments in endothelial function during early acclimatization to high altitude. Ten young healthy lowlanders were tested at sea level (344 m) and following 4-6 days at high altitude (4300 m). Vascular endothelial function was determined using the isolated perfused forearm technique with forearm blood flow (FBF) measured by strain-gauge venous occlusion plethysmography. FBF was quantified in response to acetylcholine (ACh), sodium nitroprusside (SNP) and a co-infusion of ACh with the antioxidant vitamin C (ACh+VitC). The total FBF response to ACh (area under the curve) was ∼30% lower at high altitude than at sea level (P = 0.048). There was no difference in the response to SNP at high altitude (P = 0.860). At sea level, the co-infusion of ACh+VitC had no influence on the FBF dose response (P = 0.268); however, at high altitude ACh+VitC resulted in an average increase in the FBF dose response by ∼20% (P = 0.019). At high altitude, the decreased FBF response to ACh, and the increase in FBF in response to ACh+VitC, were associated with the magnitude of arterial hypoxaemia (R2 = 0.60, P = 0.008 and R2 = 0.63, P = 0.006, respectively). Collectively, these data support the hypothesis that impairments in vascular endothelial function at high altitude are in part attributable to oxidative stress, a consequence of the magnitude of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related vascular dysfunction. KEY POINTS: Vascular dysfunction has been demonstrated in lowlanders at high altitude (>4000 m). However, the extent of impairment and the delineation of contributing mechanisms have remained unclear. Using the gold-standard isolated perfused forearm model, we determined the extent of vasodilatory dysfunction and oxidative stress as a contributing mechanism in healthy lowlanders before and 4-6 days after rapid ascent to 4300 m. The total forearm blood flow response to acetylcholine at high altitude was decreased by ∼30%. Co-infusion of acetylcholine with the antioxidant vitamin C partially restored the total forearm blood flow by ∼20%. The magnitude of forearm blood flow reduction, as well as the impact of oxidative stress, was positively associated with the individual severity of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related changes in endothelial-mediated vasodilatory function.


Assuntos
Antioxidantes , Ácido Ascórbico , Acetilcolina/farmacologia , Altitude , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Endotélio Vascular/fisiologia , Antebraço/irrigação sanguínea , Humanos , Hipóxia , Nitroprussiato/farmacologia , Fluxo Sanguíneo Regional , Vasodilatação , Vasodilatadores/farmacologia
15.
J Cereb Blood Flow Metab ; 42(4): 559-571, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904461

RESUMO

This study investigated trans-cerebral internal jugular venous-arterial bicarbonate ([HCO3-]) and carbon dioxide tension (PCO2) exchange utilizing two separate interventions to induce acidosis: 1) acute respiratory acidosis via elevations in arterial PCO2 (PaCO2) (n = 39); and 2) metabolic acidosis via incremental cycling exercise to exhaustion (n = 24). During respiratory acidosis, arterial [HCO3-] increased by 0.15 ± 0.05 mmol ⋅ l-1 per mmHg elevation in PaCO2 across a wide physiological range (35 to 60 mmHg PaCO2; P < 0.001). The narrowing of the venous-arterial [HCO3-] and PCO2 differences with respiratory acidosis were both related to the hypercapnia-induced elevations in cerebral blood flow (CBF) (both P < 0.001; subset n = 27); thus, trans-cerebral [HCO3-] exchange (CBF × venous-arterial [HCO3-] difference) was reduced indicating a shift from net release toward net uptake of [HCO3-] (P = 0.004). Arterial [HCO3-] was reduced by -0.48 ± 0.15 mmol ⋅ l-1 per nmol ⋅ l-1 increase in arterial [H+] with exercise-induced acidosis (P < 0.001). There was no relationship between the venous-arterial [HCO3-] difference and arterial [H+] with exercise-induced acidosis or CBF; therefore, trans-cerebral [HCO3-] exchange was unaltered throughout exercise when indexed against arterial [H+] or pH (P = 0.933 and P = 0.896, respectively). These results indicate that increases and decreases in systemic [HCO3-] - during acute respiratory/exercise-induced metabolic acidosis, respectively - differentially affect cerebrovascular acid-base balance (via trans-cerebral [HCO3-] exchange).


Assuntos
Desequilíbrio Ácido-Base , Acidose Respiratória , Acidose , Equilíbrio Ácido-Base/fisiologia , Bicarbonatos , Dióxido de Carbono , Humanos , Concentração de Íons de Hidrogênio
17.
Cladistics ; 37(4): 402-422, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34478193

RESUMO

Despite many attempts in the Sanger sequencing era, the phylogeny of fig trees remains unresolved, which limits our ability to analyze the evolution of key traits that may have contributed to their evolutionary and ecological success. We used restriction-site-associated DNA sequencing (c. 420 kb) and 102 morphological characters to elucidate the relationships between 70 species of Ficus. To increase phylogenetic information for higher-level relationships, we targeted conserved regions and assembled paired reads into long loci to enable the retrieval of homologous loci in outgroup genomes. We compared morphological and molecular results to highlight discrepancies and reveal possible inference bias. For the first time, we recovered a monophyletic subgenus Urostigma (stranglers) and a clade with all gynodioecious Ficus. However, we show, with a new approach based on iterative principal component analysis, that it is not (and will probably never be) possible to homogenize evolutionary rates and GC content for all taxa before phylogenetic inference. Four competing positions for the root of the molecular tree are possible. The placement of section Pharmacosycea as sister to other fig trees is not supported by morphological data and considered a result of a long-branch attraction artefact to the outgroups. Regarding morphological features and indirect evidence from the pollinator tree of life, the topology that divides Ficus into monoecious versus gynodioecious species appears most plausible. It seems most likely that the ancestor of fig trees was a freestanding tree and active pollination is inferred as the ancestral state, contrary to previous hypotheses. However, ambiguity remains on the ancestral breeding system. Despite morphological plasticity, we advocate restoring a central role to morphology in our understanding of the evolution of Ficus, as it can help detect systematic errors that appear more pronounced with larger molecular datasets.


Assuntos
Evolução Biológica , DNA de Plantas/genética , Ficus/anatomia & histologia , Ficus/fisiologia , Filogenia , Raízes de Plantas/fisiologia , Animais , DNA de Plantas/análise , Melhoramento Vegetal , Polinização
18.
Physiol Rep ; 9(10): e14873, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34042313

RESUMO

Breath holding divers display extraordinary voluntary control over involuntary reactions during apneic episodes. After an initial easy phase to the breath hold, this voluntary control is applied against the increasing involuntary effort to inspire. We quantified an electromyographic (EMG) signal associated with respiratory movements derived from broad bandpass ECG recordings taken from experienced breath holding divers during prolonged dry breath holds. We sought to define their relationship to involuntary respiratory movements and compare these signals with what is known to occur in obstructive sleep apnea (OSA) and epileptic seizures. ECG and inductance plethysmography records from 14 competitive apneists (1 female) were analyzed. ECG records were analyzed for intervals and the EMG signal was extracted from a re-filtered version of the original broad bandpass signal and ultimately enveloped with a Hilbert transform. EMG burst magnitude, quantified as an area measure, increased over the course of the struggle phase, correlated with inductance plethysmography measures, and corresponded to significant variance in heart rate variability. We conclude that an EMG signal extracted from the ECG can complement plethysmography during breath holds and may help quantify involuntary effort, as reported previously for obstructive sleep apnea. Further, given the resemblance between cardiac and respiratory features of the breath hold struggle phase to obstructive apnea that can occur during sleep or in association with epileptic seizure activity, the struggle phase may be a useful simulation of obstructive apnea for controlled experimentation that can help clarify aspects of acute and chronic apnea-associated physiology.


Assuntos
Suspensão da Respiração , Eletrocardiografia/métodos , Eletromiografia/métodos , Mecânica Respiratória/fisiologia , Apneia Obstrutiva do Sono/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pletismografia/métodos , Apneia Obstrutiva do Sono/diagnóstico , Fatores de Tempo
19.
Exp Physiol ; 106(6): 1335-1342, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33745204

RESUMO

NEW FINDINGS: What is the central question of this study? Are coagulation and fibrinolytic factors disrupted in Andean highlanders with excessive erythrocytosis? What is the main finding and its importance? Excessive erythrocytosis is not associated with prothombotic disruptions in coagulation or the fibrinolytic system in Andean highlanders. Impairments in coagulation and fibrinolysis may not contribute to the increased vascular risk associated with excessive erythrocytosis. ABSTRACT: Increased coagulation and reduced fibrinolysis are central factors underlying thrombotic risk and events. High altitude-induced excessive erythrocytosis (EE) is prevalent in Andean highlanders, contributing to increased cardiovascular risk. Disruption in the coagulation-fibrinolytic axis resulting in uncontrolled fibrin deposition might underlie the increased thrombotic risk associated with high-altitude EE. The experimental aim of this study was to determine whether EE is associated with a prothrombotic blood coagulation and fibrinolytic profile in Andean highlanders. Plasma coagulation factors (von Willebrand factor and factors VII, VIII and X), fibrinolytic factors [tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1)] and D-dimer levels were determined in 26 male residents of Cerro de Pasco, Peru (4340 m a.s.l.): 12 without EE (age, 40 ± 13 years; haemoglobin, 17.4 ± 1.9 g/dl) and 14 with EE (age, 43 ± 15 years; haemoglobin, 24.4 ± 1.6 g/dl). There were no significant differences in von Willebrand factor (40.5 ± 24.8 vs. 45.5 ± 22.4%), factor VII (77.0 ± 14.5 vs. 72.5 ± 8.9%), factor VIII (55.6 ± 19.8 vs. 60.7 ± 26.8%) and factor X (73.9 ± 8.3 vs. 67.3 ± 10.9%) between the Andean highlanders without or with EE. The t-PA antigen (8.5 ± 3.6 vs. 9.6 ± 5.4 ng/ml), t-PA activity (5.5 ± 2.4 vs. 5.8 ± 1.6 IU/ml), PAI antigen (45.0 ± 33.8 vs. 40.5 ± 15.8 ng/ml), PAI-1 activity (0.24 ± 0.09 vs. 0.25 ± 0.11 IU/ml) and the molar concentration ratio of active t-PA to active PAI-1 (1:0.051 ± 0.034 vs. 1:0.046 ± 0.021 mmol/l) were also similar between the groups, as were D-dimer levels (235.0 ± 126.4 vs. 268.4 ± 173.7 ng/ml). Collectively, the results of the present study indicate that EE is not associated with a hypercoagulable, hypofibrinolytic state in Andean highlanders.


Assuntos
Coagulação Sanguínea , Fibrinólise , Policitemia , Adulto , Altitude , Coração , Hemoglobinas , Humanos , Masculino , Pessoa de Meia-Idade , América do Sul
20.
Am J Physiol Heart Circ Physiol ; 320(5): H1851-H1861, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33710927

RESUMO

High altitude-related excessive erythrocytosis (EE) is associated with increased cardiovascular risk. The experimental aim of this study was to determine the effects of microvesicles isolated from Andean highlanders with EE on endothelial cell inflammation, oxidative stress, apoptosis, and nitric oxide (NO) production. Twenty-six male residents of Cerro de Pasco, Peru (4,340 m), were studied: 12 highlanders without EE (age: 40 ± 4 yr; BMI: 26.4 ± 1.7; Hb: 17.4 ± 0.5 g/dL, Spo2: 86.9 ± 1.0%) and 14 highlanders with EE (43 ± 4 yr; 26.2 ± 0.9; 24.4 ± 0.4 g/dL; 79.7 ± 1.6%). Microvesicles were isolated, enumerated, and collected from plasma by flow cytometry. Human umbilical vein endothelial cells were cultured and treated with microvesicles from highlanders without and with EE. Microvesicles from highlanders with EE induced significantly higher release of interleukin (IL)-6 (89.8 ± 2.7 vs. 77.1 ± 1.9 pg/mL) and IL-8 (62.0 ± 2.7 vs. 53.3 ± 2.2 pg/mL) compared with microvesicles from healthy highlanders. Although intracellular expression of total NF-κB p65 (65.3 ± 6.0 vs. 74.9 ± 7.8.9 AU) was not significantly affected in cells treated with microvesicles from highlanders without versus with EE, microvesicles from highlanders with EE resulted in an ∼25% higher (P < 0.05) expression of p-NF-κB p65 (173.6 ± 14.3 vs. 132.8 ± 12.2 AU). Cell reactive oxygen species production was significantly higher (76.4.7 ± 5.4 vs. 56.7 ± 1.7% of control) and endothelial nitric oxide synthase (p-eNOS) activation (231.3 ± 15.5 vs. 286.6 ± 23.0 AU) and NO production (8.3 ± 0.6 vs. 10.7 ± 0.7 µM/L) were significantly lower in cells treated with microvesicles from highlanders with versus without EE. Cell apoptotic susceptibility was not significantly affected by EE-related microvesicles. Circulating microvesicles from Andean highlanders with EE increased endothelial cell inflammation and oxidative stress and reduced NO production.NEW & NOTEWORTHY In this study, we determined the effects of microvesicles isolated from Andean highlanders with excessive erythrocytosis (EE) on endothelial cell inflammation, oxidative stress, apoptosis, and NO production. Microvesicles from highlanders with EE induced a dysfunctional response from endothelial cells characterized by increased cytokine release and expression of active nuclear factor-κB and reduced nitric oxide production. Andean highlanders with EE exhibit dysfunctional circulating extracellular microvesicles that induce a proinflammatory, proatherogenic endothelial phenotype.


Assuntos
Aclimatação , Altitude , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Policitemia/sangue , Adulto , Apoptose , Estudos de Casos e Controles , Micropartículas Derivadas de Células/patologia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Peru , Fenótipo , Policitemia/patologia , Policitemia/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...