Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 23(22): 4456-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23015755

RESUMO

Leukotrienes (LTs) are lipid-signaling molecules derived from arachidonic acid (AA) that initiate and amplify inflammation. To initiate LT formation, the 5-lipoxygenase (5-LO) enzyme translocates to nuclear membranes, where it associates with its scaffold protein, 5-lipoxygenase-activating protein (FLAP), to form the core of the multiprotein LT synthetic complex. FLAP is considered to function by binding free AA and facilitating its use as a substrate by 5-LO to form the initial LT, LTA(4). We used a combination of fluorescence lifetime imaging microscopy, cell biology, and biochemistry to identify discrete AA-dependent and AA-independent steps that occur on nuclear membranes to control the assembly of the LT synthetic complex in polymorphonuclear leukocytes. The association of AA with FLAP changes the configuration of the scaffold protein, enhances recruitment of membrane-associated 5-LO to form complexes with FLAP, and controls the closeness of this association. Granulocyte monocyte colony-stimulating factor provides a second AA-independent signal that controls the closeness of 5-LO and FLAP within complexes but not the number of complexes that are assembled. Our results demonstrate that the LT synthetic complex is a signal integrator that transduces extracellular signals to modulate the interaction of 5-LO and FLAP.


Assuntos
Leucotrienos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Leucotrienos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transdução de Sinais
2.
Blood ; 120(7): 1489-98, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22661700

RESUMO

Ly6G is a glycosylphosphatidylinositol (GPI)-anchored protein of unknown function that is commonly targeted to induce experimental neutrophil depletion in mice. In the present study, we found that doses of anti-Ly6G Abs too low to produce sustained neutropenia remained capable of inhibiting experimental arthritis, leaving joint tissues free of infiltrating neutrophils. Thioglycollate-stimulated peritonitis was also attenuated. No alteration in neutrophil apoptosis was observed, implicating impaired recruitment. Indeed, Ly6G ligation abrogated neutrophil migration toward LTB(4) and other chemoattractants in a transwell system. Exploring the basis for this blockade, we identified colocalization of Ly6G and ß2-integrins by confocal microscopy and confirmed close association by both coimmunoprecipitation and fluorescence lifetime imaging microscopy. Anti-Ly6G Ab impaired surface expression of ß2-integrins in LTB(4)-stimulated neutrophils and mimicked CD11a blockade in inhibiting both ICAM-1 binding and firm adhesion to activated endothelium under flow conditions. Correspondingly, migration of ß2-integrin-deficient neutrophils was no longer inhibited by anti-Ly6G. These results demonstrate that experimental targeting of Ly6G has functional effects on the neutrophil population and identify a previously unappreciated role for Ly6G as a modulator of neutrophil migration to sites of inflammation via a ß2-integrin-dependent mechanism.


Assuntos
Antígenos Ly/metabolismo , Antígenos CD18/metabolismo , Infiltração de Neutrófilos , Neutrófilos/patologia , Animais , Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Artrite/sangue , Artrite/patologia , Artrite/prevenção & controle , Biomarcadores/metabolismo , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Inflamação/patologia , Articulações/efeitos dos fármacos , Articulações/patologia , Leucotrieno B4/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Peritônio/efeitos dos fármacos , Peritônio/patologia , Receptores do Leucotrieno B4/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
J Immunol ; 185(9): 5503-11, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20876351

RESUMO

Mechanisms by which mesenchymal-derived tissue lineages participate in amplifying and perpetuating synovial inflammation in arthritis have been relatively underinvestigated and are therefore poorly understood. Elucidating these processes is likely to provide new insights into the pathogenesis of multiple diseases. Leukotriene B(4) (LTB(4)) is a potent proinflammatory lipid mediator that initiates and amplifies synovial inflammation in the K/BxN model of arthritis. We sought to elucidate mechanisms by which mesenchymal-derived fibroblast-like synoviocytes (FLSs) perpetuate synovial inflammation. We focused on the abilities of FLSs to contribute to LTB(4) synthesis and to respond to LTB(4) within the joint. Using a series of bone marrow chimeras generated from 5-lipoxygenase(-/-) and leukotriene A(4) (LTA(4)) hydrolase(-/-) mice, we demonstrate that FLSs generate sufficient levels of LTB(4) production through transcellular metabolism in K/BxN serum-induced arthritis to drive inflammatory arthritis. FLSs-which comprise the predominant lineage populating the synovial lining-are competent to metabolize exogenous LTA(4) into LTB(4) ex vivo. Stimulation of FLSs with TNF increased their capacity to generate LTB(4) 3-fold without inducing the expression of LTA(4) hydrolase protein. Moreover, LTB(4) (acting via LTB(4) receptor 1) was found to modulate the migratory and invasive activity of FLSs in vitro and also promote joint erosion by pannus tissue in vivo. Our results identify novel roles for FLSs and LTB(4) in joints, placing LTB(4) regulation of FLS biology at the center of a previously unrecognized amplification loop for synovial inflammation and tissue pathology.


Assuntos
Artrite Experimental/imunologia , Fibroblastos/imunologia , Inflamação/imunologia , Leucotrieno B4/imunologia , Membrana Sinovial/imunologia , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Western Blotting , Ensaio de Imunoadsorção Enzimática , Fibroblastos/metabolismo , Imunofluorescência , Inflamação/metabolismo , Inflamação/patologia , Leucotrieno B4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
4.
J Biol Chem ; 284(1): 563-574, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18990707

RESUMO

The transient receptor potential canonical (TRPC) family channels are proposed to be essential for store-operated Ca2+ entry in endothelial cells. Ca2+ signaling is involved in NF-kappaB activation, but the role of store-operated Ca2+ entry is unclear. Here we show that thrombin-induced Ca2+ entry and the resultant AMP-activated protein kinase (AMPK) activation targets the Ca2+-independent protein kinase Cdelta (PKCdelta) to mediate NF-kappaB activation in endothelial cells. We observed that thrombin-induced p65/RelA, AMPK, and PKCdelta activation were markedly reduced by knockdown of the TRPC isoform TRPC1 expressed in human endothelial cells and in endothelial cells obtained from Trpc4 knock-out mice. Inhibition of Ca2+/calmodulin-dependent protein kinase kinase beta downstream of the Ca2+ influx or knockdown of the downstream Ca2+/calmodulin-dependent protein kinase kinase beta target kinase, AMPK, also prevented NF-kappaB activation. Further, we observed that AMPK interacted with PKCdelta and phosphorylated Thr505 in the activation loop of PKCdelta in thrombin-stimulated endothelial cells. Expression of a PKCdelta-T505A mutant suppressed the thrombin-induced but not the TNF-alpha-induced NF-kappaB activation. These findings demonstrate a novel mechanism for TRPC channels to mediate NF-kappaB activation in endothelial cells that involves the convergence of the TRPC-regulated signaling at AMPK and PKCdelta and that may be a target of interference of the inappropriate activation of NF-kappaB associated with thrombosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Endoteliais/metabolismo , Hemostáticos/farmacologia , Proteína Quinase C-delta/metabolismo , Canais de Cátion TRPC/metabolismo , Trombina/farmacologia , Fator de Transcrição RelA/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Cálcio , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Camundongos Knockout , Proteína Quinase C-delta/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Canais de Cátion TRPC/genética , Trombose/genética , Trombose/metabolismo , Fator de Transcrição RelA/genética
5.
Proc Natl Acad Sci U S A ; 105(51): 20434-9, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19075240

RESUMO

Leukotrienes (LTs) are signaling molecules derived from arachidonic acid that initiate and amplify innate and adaptive immunity. In turn, how their synthesis is organized on the nuclear envelope of myeloid cells in response to extracellular signals is not understood. We define the supramolecular architecture of LT synthesis by identifying the activation-dependent assembly of novel multiprotein complexes on the outer and inner nuclear membranes of mast cells. These complexes are centered on the integral membrane protein 5-Lipoxygenase-Activating Protein, which we identify as a scaffold protein for 5-Lipoxygenase, the initial enzyme of LT synthesis. We also identify these complexes in mouse neutrophils isolated from inflamed joints. Our studies reveal the macromolecular organization of LT synthesis.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Proteínas de Transporte/metabolismo , Leucotrienos/biossíntese , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/análise , Membrana Nuclear/metabolismo , Proteínas Ativadoras de 5-Lipoxigenase , Animais , Artrite/enzimologia , Artrite/metabolismo , Proteínas de Membrana/análise , Camundongos , Células Mieloides/química , Células Mieloides/metabolismo , Neutrófilos/química , Neutrófilos/metabolismo , Membrana Nuclear/química
6.
J Biol Chem ; 283(7): 4210-8, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18077459

RESUMO

We investigated the role of NF-kappaB activation by the bacterial product lipopolysaccharide (LPS) in inducing caveolin-1 (Cav-1) expression and its consequence in contributing to the leakiness of the endothelial barrier. We observed that LPS challenge of human lung microvascular endothelial cells induced concentration- and time-dependent increases in expression of Cav-1 mRNA and protein. The NEMO (NF-kappaB essential modifier binding domain)-binding domain peptide (IkB kinase (IKK)-NEMO-binding domain (NBD) peptide), which prevents NF-kappaB activation by inhibiting the interaction of IKKgamma with the IKK complex, blocked LPS-induced Cav-1 mRNA and protein expression. Knockdown of NF-kappaB subunit p65/RelA expression with small interfering RNA also prevented LPS-induced Cav-1 expression. Caveolae open to the apical and basal plasmalemma of endothelial cells increased 2-4-fold within 4 h of LPS exposure. IKK-NBD peptide markedly reduced the LPS-induced increase in the number of caveolae as well as transendothelial albumin permeability. These observations were recapitulated in mouse studies in which IKK-NBD peptide prevented Cav-1 expression and interfered with the increase in lung microvessel permeability induced by LPS. Thus, LPS mediates NF-kappaB-dependent Cav-1 expression that results in increased caveolae number and thereby contributes to the mechanism of increased transendothelial albumin permeability.


Assuntos
Caveolina 1/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , NF-kappa B/fisiologia , Sequência de Bases , Células Cultivadas , Primers do DNA , Endotélio Vascular/metabolismo , Humanos , Microscopia Confocal , Reação em Cadeia da Polimerase
7.
J Biol Chem ; 281(30): 20715-20727, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16709572

RESUMO

Thrombin activation of protease-activated receptor-1 induces Ca(2+) influx through store-operated cation channel TRPC1 in endothelial cells. We examined the role of Ca(2+) influx induced by the depletion of Ca(2+) stores in signaling TRPC1 expression in endothelial cells. Both thrombin and a protease-activated receptor-1-specific agonist peptide induced TRPC1 expression in human umbilical vein endothelial cells, which was coupled to an augmented store-operated Ca(2+) influx and increase in endothelial permeability. To delineate the mechanisms of thrombin-induced TRPC1 expression, we transfected in endothelial cells TRPC1-promoter-luciferase (TRPC1-Pro-Luc) construct containing multiple nuclear factor-kappaB (NF-kappaB) binding sites. Co-expression of dominant negative IkappaBalpha mutant prevented the thrombin-induced increase in TRPC1 expression, indicating the key role of NF-kappaB activation in mediating the response. Using TRPC1 promoter-deletion mutant constructs, we showed that NF-kappaB binding sites located between -1623 and -871 in the TRPC1 5'-regulatory region were required for thrombin-induced TRPC1 expression. Electrophoretic mobility shift assay utilizing TRPC1 promoter-specific oligonucleotides identified that the DNA binding activities of NF-kappaB to NF-kappaB consensus sites were located in this domain. Supershift assays using NF-kappaB protein-specific antibodies demonstrated the binding of p65 homodimer to the TRPC1 promoter. Inhibition of store Ca(2+) depletion, buffering of intracellular Ca(2+), or down-regulation of protein kinase Calpha downstream of Ca(2+) influx all blocked thrombin-induced NF-kappaB activation and the resultant TRPC1 expression in endothelial cells. Thus, Ca(2+) influx via TRPC1 is a critical feed-forward pathway responsible for TRPC1 expression. The NF-kappaB-regulated TRPC1 expression may be an essential mechanism of vascular inflammation and, hence, a novel therapeutic target.


Assuntos
Cálcio/metabolismo , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Receptor PAR-1/metabolismo , Sítios de Ligação , Regulação para Baixo , Células Endoteliais/citologia , Genes Dominantes , Humanos , Mutação , Oligonucleotídeos/química , Regiões Promotoras Genéticas , Canais de Cátion TRPC/metabolismo , Trombina/química , Trombina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...