Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(11): 4813-4819, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35229322

RESUMO

BACKGROUND: This study explored the genetic variability in the New Zealand sheep population for economically important skin traits. Skins were collected at slaughter from two progeny test flocks, resulting in 725 skins evaluated for grain strain, flatness, crust leather strength and overall suitability for shoe leather. DNA profiles collected from skins post-slaughter were matched to individual animals using previously collected high-density genotypes. RESULTS: Considerable phenotypic variation for skin traits was observed, with around 40% of the skins being identified as suitable for high-value shoe leather production. Several key traits associated with leather production, including flatness, tear strength, grain strength and grain strain were found to be moderate to highly heritable (h2 = 0.28-0.82). There were no major significant genome-wide association study (GWAS) peaks associated with many of the traits examined, however, one single-nucleotide polymorphism (SNP) reached significance for the flatness of the skin over the hindquarters. CONCLUSION: This research confirms that suitable lamb skins can be bred for use as high-value shoe leather. While moderately to highly heritable, skin traits in New Zealand lambs appear to be polygenic with no genes of major effect underlaying the traits of interest. Given the complex nature of these traits, the identification and selection of animals with higher-value skins may be enabled by geomic selection. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Animais , Nova Zelândia , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Pele
2.
Genes (Basel) ; 12(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680955

RESUMO

Facial eczema (FE) is a significant metabolic disease that affects New Zealand ruminants. Ingestion of the mycotoxin sporidesmin leads to liver and bile duct damage, which can result in photosensitisation, reduced productivity and death. Strategies used to manage the incidence and severity of the disease include breeding. In sheep, there is considerable genetic variation in the response to FE. A commercial testing program is available for ram breeders who aim to increase tolerance, determined by the concentration of the serum enzyme, gamma-glutamyltransferase 21 days after a measured sporidesmin challenge (GGT21). Genome-wide association studies were carried out to determine regions of the genome associated with GGT21. Two regions on chromosomes 15 and 24 are reported, which explain 5% and 1% of the phenotypic variance in the response to FE, respectively. The region on chromosome 15 contains the ß-globin locus. Of the significant SNPs in the region, one is a missense variant within the haemoglobin subunit ß (HBB) gene. Mass spectrometry of haemoglobin from animals with differing genotypes at this locus indicated that genotypes are associated with different forms of adult ß-globin. Haemoglobin haplotypes have previously been associated with variation in several health-related traits in sheep and warrant further investigation regarding their role in tolerance to FE in sheep. We show a strategic approach to the identification of regions of importance for commercial breeding programs with a combination of discovery, statistical and biological validation. This study highlights the power of using increased density genotyping for the identification of influential genomic regions, combined with subsequent inclusion on lower density genotyping platforms.


Assuntos
Eczema/genética , Estudo de Associação Genômica Ampla/veterinária , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Doenças dos Ovinos/genética , Animais , Eczema/sangue , Eczema/etiologia , Eczema/veterinária , Estudo de Associação Genômica Ampla/métodos , Hemoglobinas/genética , Ovinos , Doenças dos Ovinos/sangue , Doenças dos Ovinos/etiologia , Esporidesminas/toxicidade , gama-Glutamiltransferase/sangue
3.
J Anim Sci ; 96(11): 4512-4520, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30099550

RESUMO

Pneumonia is an important issue for sheep production, leading to reduced growth rate and a predisposition to pleurisy. The objective of this study was to identify loci associated with pneumonic lesions and pleurisy in New Zealand progeny test lambs. The lungs from 3,572 progeny-test lambs were scored for presence and severity of pneumonic lesions and pleurisy at slaughter. Animals were genotyped using the Illumina Ovine Infinium HD SNP BeadChip (606,006 markers). The heritability of lung lesion score and pleurisy were calculated using the genomic relationship matrix, and genome-wide association analyses were conducted using EMMAX and haplotype trend regression. At slaughter, 35% of lambs had pneumonic lesions, with 9% showing lesions on more than half of any individual lobe. The number of lambs recorded as having pleurisy by the processing plants was 9%. Heritability estimates for pneumonic lesions and pleurisy scores adjusted for heteroscedasticity (CPSa and PLEURa) were 0.16 (± 0.03) and 0.05 (± 0.02), respectively. Five single-nucleotide polymorphisms (SNPs) were significantly associated with pneumonic lesions at the genome-wide level, and additional 37 SNPs were suggestively significant. Four SNPs were significantly associated with pleurisy, with an additional 11 SNPs reaching the suggestive level of significance. There were no regions that overlapped between the 2 traits. Multiple SNPs were in regions that contained genes involved in either the DNA damage response or the innate immune response, including several that had previously been reported to have associations with respiratory disease. Both EMMAX and HTR analyses of pleurisy data showed a significant peak on chromosome 2, located downstream from the transcription factor SP3. SP3 activates or suppresses the expression of numerous genes, including several genes with known functions in the immune system. This study identified several SNPs associated with genes involved in both the innate immune response and the response to DNA damage that are associated with pneumonic lesions and pleurisy in lambs at slaughter. Additionally, the identification in sheep of several SNPs within genes that have previously been associated with the respiratory system in cattle, pigs, rats, and mice indicates that there may be common pathways that underlie the response to invasion by respiratory pathogens in multiple species.


Assuntos
Estudo de Associação Genômica Ampla/veterinária , Pleurisia/veterinária , Polimorfismo de Nucleotídeo Único/genética , Doenças dos Ovinos/genética , Animais , Predisposição Genética para Doença , Genótipo , Haplótipos , Pulmão/patologia , Nova Zelândia , Fenótipo , Pleurisia/genética , Ovinos
4.
Microbiology (Reading) ; 153(Pt 10): 3218-3227, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17906121

RESUMO

Unlike the colicins, microcins and related peptide antibiotics, little is known about antibiotic proteins (M(r)>10,000) from Gram-positive bacteria, since only few examples have been described to date. In this study we used heterologous expression of recombinant proteins to access the 17 kDa antibiotic protein SA-M57 from Streptococcus pyogenes, along with two proteins of unknown function identified in publicly available databases: EF1097 from Enterococcus faecalis and YpkK from Corynebacterium jeikeium. Here we show that all three are antibiotic proteins with different spectra of antimicrobial activity that kill sensitive bacteria at nanomolar concentrations. In silico structure predictions indicate that although the three proteins share little sequence similarity, they may be composed of conserved secondary structural elements: a relatively unstructured, acidic N-terminal portion and a basic C-terminal portion characterized by two helical elements separated by a loop structure and stabilized by an essential disulphide. Expression of individual segments as well as protein chimaeras revealed that, at least in the case of YpkK, the C-terminal portion is responsible for the killing action of the protein, whereas the role of the N-terminal portion remains unclear. Both scnM57 and ef1097 appear to be widely distributed in Strep. pyogenes and Ent. faecalis (respectively), whereas ypkK is found only rarely amongst clinical isolates of C. jeikeium. Finally, we determined that the proteins kill sensitive bacteria without lysis, a feature that distinguishes them from known murolytic proteins.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/farmacologia , Corynebacterium/genética , Enterococcus faecalis/genética , Streptococcus pyogenes/genética , Sequência de Aminoácidos , Antibacterianos/química , Bacteriocinas/química , Expressão Gênica , Bactérias Gram-Positivas/efeitos dos fármacos , Viabilidade Microbiana , Dados de Sequência Molecular , Peso Molecular , Estrutura Secundária de Proteína
5.
Microbiology (Reading) ; 152(Pt 7): 1991-2001, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16804174

RESUMO

Dysgalacticin is a novel bacteriocin produced by Streptococcus dysgalactiae subsp. equisimilis strain W2580 that has a narrow spectrum of antimicrobial activity directed primarily against the principal human streptococcal pathogen Streptococcus pyogenes. Unlike many previously described bacteriocins of Gram-positive bacteria, dysgalacticin is a heat-labile 21.5 kDa anionic protein that kills its target without inducing lysis. The N-terminal amino acid sequence of dysgalacticin [Asn-Glu-Thr-Asn-Asn-Phe-Ala-Glu-Thr-Gln-Lys-Glu-Ile-Thr-Thr-Asn-(Asn)-Glu-Ala] has no known homologue in publicly available sequence databases. The dysgalacticin structural gene, dysA, is located on the indigenous plasmid pW2580 of strain W2580 and encodes a 220 aa preprotein which is probably exported via a Sec-dependent transport system. Natural dysA variants containing conservative amino acid substitutions were also detected by sequence analyses of dysA elements from S. dysgalactiae strains displaying W2580-like inhibitory profiles. Production of recombinant dysgalacticin by Escherichia coli confirmed that this protein is solely responsible for the inhibitory activity exhibited by strain W2580. A combination of in silico secondary structure prediction and reductive alkylation was employed to demonstrate that dysgalacticin has a novel structure containing a disulphide bond essential for its biological activity. Moreover, dysgalacticin displays similarity in predicted secondary structure (but not primary amino acid sequence or inhibitory spectrum) with another plasmid-encoded streptococcal bacteriocin, streptococcin A-M57 from S. pyogenes, indicating that dysgalacticin represents a prototype of a new class of antimicrobial proteins.


Assuntos
Bacteriocinas/biossíntese , Plasmídeos , Streptococcus/metabolismo , Sequência de Aminoácidos , Bacteriocinas/química , Bacteriocinas/genética , Bacteriocinas/isolamento & purificação , Sequência de Bases , Dissulfetos/química , Escherichia coli/genética , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...