Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 30(1): 97-109.e9, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36626903

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting the degradation of hepatic LDL receptors (LDLRs). Current therapeutic approaches use antibodies that disrupt PCSK9 binding to LDLR to reduce circulating LDL-C concentrations or siRNA that reduces PCSK9 synthesis and thereby levels in circulation. Recent reports describe small molecules that, like therapeutic antibodies, interfere with PCSK9 binding to LDLR. We report an alternative approach to decrease circulating PCSK9 levels by accelerating PCSK9 clearance and degradation using heterobifunctional molecules that simultaneously bind to PCSK9 and the asialoglycoprotein receptor (ASGPR). Various formats, including bispecific antibodies, antibody-small molecule conjugates, and heterobifunctional small molecules, demonstrate binding in vitro and accelerated PCSK9 clearance in vivo. These molecules showcase a new approach to PCSK9 inhibition, targeted plasma protein degradation (TPPD), and demonstrate the feasibility of heterobifunctional small molecule ligands to accelerate the clearance and degradation of pathogenic proteins in circulation.


Assuntos
Pró-Proteína Convertase 9 , Serina Endopeptidases , Pró-Proteína Convertase 9/metabolismo , Receptor de Asialoglicoproteína , Serina Endopeptidases/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , LDL-Colesterol , Ligantes
2.
Sci Rep ; 12(1): 14954, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056093

RESUMO

Multiple preclinical studies have shown improved outcomes when radiation therapy is combined with immune modulating antibodies. However, to date, many of these promising results have failed to translate to successful clinical studies. This led us to explore additional checkpoint and co-stimulatory pathways that may be regulated by radiation therapy. Here, we demonstrate that radiation increases the expression of inducible T cell co-stimulator (ICOS) on both CD4 and CD8 T cells in the blood following treatment. Moreover, when we combined a novel ICOS agonist antibody with radiation we observed durable cures across multiple tumor models and mouse strains. Depletion studies revealed that CD8 T cells were ultimately required for treatment efficacy, but CD4 T cells and NK cells also partially contributed to tumor control. Phenotypic analysis showed that the combination therapy diminished the increased infiltration of regulatory T cells into the tumor that typically occurs following radiation alone. Finally, we demonstrate in a poorly immunogenic pancreatic tumor model which is resistant to combined radiation and anti-PD1 checkpoint blockade that the addition of this novel ICOS agonist antibody to the treatment regimen results in tumor control. These findings identify ICOS as part of a T cell pathway that is modulated by radiation and targeting this pathway with a novel ICOS antibody results in durable tumor control in preclinical models.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Anticorpos/metabolismo , Linfócitos T CD4-Positivos , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Camundongos , Neoplasias/metabolismo , Linfócitos T Reguladores
3.
Life Sci Alliance ; 5(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487695

RESUMO

Radiation therapy generates extensive cancer cell death capable of promoting tumor-specific immunity. Within the tumor, conventional dendritic cells (cDCs) are known to carry tumor-associated antigens to the draining lymph node (TdLN) where they initiate T-cell priming. How radiation influences cDC migration is poorly understood. Here, we show that immunological efficacy of radiation therapy is dependent on cDC migration in radioimmunogenic tumors. Using photoconvertible mice, we demonstrate that radiation impairs cDC migration to the TdLN in poorly radioimmunogenic tumors. Comparative transcriptional analysis revealed that cDCs in radioimmunogenic tumors express genes associated with activation of endogenous adjuvant signaling pathways when compared with poorly radioimmunogenic tumors. Moreover, an exogenous adjuvant combined with radiation increased the number of migrating cDCs in these poorly radioimmunogenic tumors. Taken together, our data demonstrate that cDC migration play a critical role in the response to radiation therapy.


Assuntos
Células Dendríticas , Linfonodos , Animais , Camundongos , Linfócitos T
4.
Oncotarget ; 12(13): 1201-1213, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34194619

RESUMO

Surgical resection of head and neck squamous-cell carcinoma (HNSCC) is associated with high rates of local and distant recurrence, partially mitigated by adjuvant therapy. A pre-existing immune response in the patient's tumor is associated with better outcomes following treatment with conventional therapies, but improved options are needed for patients with poor anti-tumor immunity. We hypothesized that local delivery of tumor antigen-specific T-cells into the resection cavity following surgery would direct T-cells to residual antigens in the margins and draining lymphatics and present a platform for T-cell-targeted immunotherapy. We loaded T-cells into a biomaterial that conformed to the resection cavity and demonstrated that it could release T-cells that retained their functional activity in-vitro, and in a HNSCC model in-vivo. Locally delivered T-cells loaded in a biomaterial were equivalent in control of established tumors to intravenous adoptive T-cell transfer, and resulted in the systemic circulation of tumor antigen-specific T-cells as well as local accumulation in the tumor. We demonstrate that adjuvant therapy with anti-PD1 following surgical resection was ineffective unless combined with local delivery of T-cells. These data demonstrate that local delivery of tumor-specific T-cells is an efficient option to convert tumors that are unresponsive to checkpoint inhibitors to permit tumor cures.

5.
Front Oncol ; 11: 611365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221953

RESUMO

Patients exhibit distinct responses to immunotherapies that are thought to be linked to their tumor immune environment. However, wide variations in outcomes are also observed in patients with matched baseline tumor environments, indicating that the biological response to treatment is not currently predictable using a snapshot analysis. To investigate the relationship between the immune environment of tumors and the biological response to immunotherapies, we characterized four murine head and neck squamous cell carcinoma (HNSCC) models on two genetic backgrounds. Using tumor explants from those models, we identified correlations between the composition of infiltrating immune cells and baseline cytokine profiles prior to treatment. Following treatment with PD-1 blockade, CTLA-4 blockade, or OX40 stimulation, we observed inter-individual variability in the response to therapy between genetically identical animals bearing the same tumor. These distinct biological responses to treatment were not linked to the initial tumor immune environment, meaning that outcome would not be predictable from a baseline analysis of the tumor infiltrates. We similarly performed the explant assay on patient HNSCC tumors and found significant variability between the baseline environment of the tumors and their response to therapy. We propose that tumor explants provide a rapid biological assay to assess response to candidate immunotherapies that may allow matching therapies to individual patient tumors. Further development of explant approaches may allow screening and monitoring of treatment responses in HNSCC.

6.
J Hum Lact ; 37(3): 492-498, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34297643

RESUMO

BACKGROUND: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has infected over 127 million people worldwide, with almost 2.8 million deaths at the time of writing. Since no lactating individuals were included in initial trials of vaccine safety and efficacy, research on SARS-CoV-2 vaccination in lactating women and the potential transmission of passive immunity to the infant through mother's milk is needed to guide patients, clinicians, and policy makers on whether to recommend immunization during the worldwide effort to curb the spread of this virus. RESEARCH AIMS: (1) To determine whether SARS-CoV-2 specific immunoglobins are found in human milk after vaccination, and (2) to characterize the time course and types of immunoglobulins present. METHODS: A longitudinal cohort study of lactating women (N = 7) who planned to receive both doses of the Pfizer-BioNTech or Moderna SARS-CoV-2 vaccine between December 2020 and January 2021 provided milk samples. These were collected pre-vaccination and at 11 additional timepoints, with the last sample at 14 days after the second dose of vaccine. Samples were analyzed for levels of SARS-CoV-2 specific immunoglobulins A and G (IgA and IgG). RESULTS: We observed significantly elevated levels of SARS-CoV-2 specific IgG and IgA antibodies in human milk beginning approximately 7 days after the initial vaccine dose, with an IgG-dominant response. CONCLUSIONS: Maternal vaccination results in SARS-CoV-2 specific immunoglobulins in human milk that may be protective for infants.


Assuntos
COVID-19 , SARS-CoV-2 , Aleitamento Materno , Vacinas contra COVID-19 , Feminino , Humanos , Lactente , Lactação , Estudos Longitudinais , Leite Humano , Mães , Vacinação
7.
Front Immunol ; 11: 1430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733475

RESUMO

The innate immune response to cytosolic DNA involves transcriptional activation of type I interferons (IFN-I) and proinflammatory cytokines. This represents the culmination of intracellular signaling pathways that are initiated by pattern recognition receptors that engage DNA and require the adaptor protein Stimulator of Interferon Genes (STING). These responses lead to the generation of cellular and tissue states that impair microbial replication and facilitate the establishment of long-lived, antigen-specific adaptive immunity. Ultimately this can lead to immune-mediated protection from infection but also to the cytotoxic T cell-mediated clearance of tumor cells. Intriguingly, pharmacologic activation of STING-dependent phenotypes is known to enhance both vaccine-associated immunogenicity and immune-based anti-tumor therapies. Unfortunately, the STING protein exists as multiple variant forms in the human population that exhibit differences in their reactivity to chemical stimuli and in the intensity of molecular signaling they induce. In light of this, STING-targeting drug discovery efforts require an accounting of protein variant-specific activity. Herein we describe a small molecule termed M04 that behaves as a novel agonist of human STING. Importantly, we find that the molecule exhibits a differential ability to activate STING based on the allelic variant examined. Furthermore, while M04 is inactive in mice, expression of human STING in mouse cells rescues reactivity to the compound. Using primary human cells in ex vivo assays we were also able to show that M04 is capable of simulating innate responses important for adaptive immune activation such as cytokine secretion, dendritic cell maturation, and T cell cross-priming. Collectively, this work demonstrates the conceivable utility of a novel agonist of human STING both as a research tool for exploring STING biology and as an immune potentiating molecule.


Assuntos
Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Proteínas de Membrana/agonistas , Alelos , Animais , Descoberta de Drogas , Humanos , Imunidade Inata/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos
8.
Int J Radiat Oncol Biol Phys ; 108(1): 93-103, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311417

RESUMO

PURPOSE: The role of MerTK, a member of the Tyro3-Axl-MerTK family of receptor tyrosine kinase, in the immune response to radiation therapy (RT) is unclear. We investigated immune-mediated tumor control after RT in murine models of colorectal and pancreatic adenocarcinoma using MerTK wild-type and knock-out hosts and whether inhibition of MerTK signaling with warfarin could replicate MerTK knock-out phenotypes. METHODS AND MATERIALS: Wild-type and MerTK-/- BALB/c mice were grafted in the flanks with CT26 tumors and treated with computed tomography guided RT. The role of macrophages and CD8 T cells in the response to radiation were demonstrated with cell depletion studies. The role of MerTK in priming immune responses after RT alone and with agonist antibodies to the T cell costimulatory molecule OX40 was evaluated in a Panc02-SIY model antigen system. The effect of warfarin therapy on the in-field and abscopal response to RT was demonstrated in murine models of colorectal adenocarcinoma. The association between warfarin and progression-free survival for patients treated with SABR for early-stage non-small cell lung cancer was evaluated in a multi-institutional retrospective study. RESULTS: MerTK-/- hosts had better tumor control after RT compared with wild-type mice in a macrophage and CD8 T cell-dependent manner. MerTK-/- mice showed increased counts of tumor antigen-specific CD8 T cells in the peripheral blood after tumor-directed RT alone and in combination with agonist anti-OX40. Warfarin therapy phenocopied MerTK-/- for single-flank tumors treated with RT and improved abscopal responses for RT combined with anti-CTLA4. Patients on warfarin therapy when treated with SABR for non-small cell lung cancer had higher progression-free survival rates compared with non-warfarin users. CONCLUSIONS: MerTK inhibits adaptive immune responses after SABR. Because warfarin inhibits MerTK signaling and phenocopies genetic deletion of MerTK in mice, warfarin therapy may have beneficial effects in combination with SABR and immune therapy in patients with cancer.


Assuntos
Imunidade Adaptativa/genética , Imunidade Adaptativa/efeitos da radiação , Técnicas de Inativação de Genes , c-Mer Tirosina Quinase/deficiência , c-Mer Tirosina Quinase/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Terapia de Alvo Molecular , Varfarina/farmacologia , Varfarina/uso terapêutico
9.
J Immunol ; 204(12): 3416-3424, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32341058

RESUMO

Radiation therapy is capable of directing adaptive immune responses against tumors by stimulating the release of endogenous adjuvants and tumor-associated Ags. Within the tumor, conventional type 1 dendritic cells (cDC1s) are uniquely positioned to respond to these signals, uptake exogenous tumor Ags, and migrate to the tumor draining lymph node to initiate cross-priming of tumor-reactive cytotoxic CD8+ T cells. In this study, we report that radiation therapy promotes the activation of intratumoral cDC1s in radioimmunogenic murine tumors, and this process fails to occur in poorly radioimmunogenic murine tumors. In poorly radioimmunogenic tumors, the adjuvant polyinosinic-polycytidylic acid overcomes this failure following radiation and successfully drives intratumoral cDC1 maturation, ultimately resulting in durable tumor cures. Depletion studies revealed that both cDC1 and CD8+ T cells are required for tumor regression following combination therapy. We further demonstrate that treatment with radiation and polyinosinic-polycytidylic acid significantly expands the proportion of proliferating CD8+ T cells in the tumor with enhanced cytolytic potential and requires T cell migration from lymph nodes for therapeutic efficacy. Thus, we conclude that lack of endogenous adjuvant release or active suppression following radiation therapy may limit its efficacy in poorly radioimmunogenic tumors, and coadministration of exogenous adjuvants that promote cDC1 maturation and migration can overcome this limitation to improve tumor control following radiation therapy.


Assuntos
Células Dendríticas/imunologia , Neoplasias/imunologia , Neoplasias/radioterapia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Apresentação Cruzada/imunologia , Imunoterapia Adotiva/métodos , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Poli I-C/imunologia , Radioterapia/métodos
10.
Adv Mater ; 31(48): e1904819, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31618493

RESUMO

A new type of energy storage devices utilizing multilayer Pb(Zr0.95 Ti0.05 )0.98 Nb0.02 O3 films is studied experimentally and numerically. To release the stored energy, the multilayer ferroelectric structures are subjected to adiabatic compression perpendicular to the polarization direction. Obtained results indicate that electrical interference between layers (10-120 layers) during stress wave transit through the structures has an effect on the generated current waveforms, but no impact on the released electric charge. The multilayer films undergo a pressure-induced phase transition to antiferroelectric phase at 1.7 GPa adiabatic compression and become completely depolarized, releasing surface screening charge with density equal to their remnant polarization. An energy density of 3 J cm-3 is successfully achieved with giant power density on the order of 2 MW cm-3 , which is four orders of magnitude higher than that of any other type of energy storage device. The outputs of multilayer structures can be precisely controlled by the parameters of the ferroelectric layer and the number of layers. Multilayer film modules with a volume of 0.7 cm3 are capable of producing 2.4 kA current, not achievable in electrochemical capacitors or batteries, which will greatly enhance the miniaturization and integration requirements for emerging high-power applications.

11.
Int Rev Cell Mol Biol ; 344: 173-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798988

RESUMO

Nucleic acid sensing pathways have likely evolved as part of a broad pathogen sensing strategy intended to discriminate infectious agents and initiate appropriate innate and adaptive controls. However, in the absence of infectious agents, nucleic acid sensing pathways have been shown to play positive and negative roles in regulating tumorigenesis, tumor progression and metastatic spread. Understanding the normal biology behind these pathways and how they are regulated in malignant cells and in the tumor immune environment can help us devise strategies to exploit nucleic acid sensing to manipulate anti-cancer immunity.


Assuntos
Imunidade , Neoplasias/imunologia , Ácidos Nucleicos/metabolismo , Animais , Carcinogênese/patologia , Dano ao DNA , Humanos , Neoplasias/terapia
12.
Cancer Res ; 78(21): 6308-6319, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224374

RESUMO

Surgeons have unique in situ access to tumors enabling them to apply immunotherapies to resection margins as a means to prevent local recurrence. Here, we developed a surgical approach to deliver stimulator of interferon genes (STING) ligands to the site of a purposeful partial tumor resection using a gel-based biomaterial. In a range of head and neck squamous cell carcinoma (HNSCC) murine tumor models, we demonstrate that although control-treated tumors recur locally, tumors treated with STING-loaded biomaterials are cured. The mechanism of tumor control required activation of STING and induction of type I IFN in host cells, not cancer cells, and resulted in CD8 T-cell-mediated cure of residual cancer cells. In addition, we used a novel tumor explant assay to screen individual murine and human HNSCC tumor responses to therapies ex vivo We then utilized this information to personalize the biomaterial and immunotherapy applied to previously unresponsive tumors in mice. These data demonstrate that explant assays identify the diversity of tumor-specific responses to STING ligands and establish the utility of the explant assay to personalize immunotherapies according to the local response.Significance: Delivery of immunotherapy directly to resection sites via a gel-based biomaterial prevents locoregional recurrence of head and neck squamous cell carcinoma. Cancer Res; 78(21); 6308-19. ©2018 AACR.


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia/métodos , Interferons/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Animais , Materiais Biocompatíveis/química , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/cirurgia , Humanos , Ligantes , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia , Transplante de Neoplasias , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia , Cicatrização
13.
Sci Rep ; 8(1): 7012, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725089

RESUMO

Radiation therapy is a source of tumor antigen release that has the potential to serve as an endogenous tumor vaccination event. In preclinical models radiation therapy synergizes with checkpoint inhibitors to cure tumors via CD8 T cell responses. To evaluate the immune response initiated by radiation therapy, we used a range of approaches to block the pre-existing immune response artifact initiated by tumor implantation. We demonstrate that blocking immune responses at tumor implantation blocks development of a tumor-resident antigen specific T cell population and prevents tumor cure by radiation therapy combined with checkpoint immunotherapy. These data demonstrate that this treatment combination relies on a pre-existing immune response to cure tumors, and may not be a solution for patients without pre-existing immunity.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Terapia Combinada/métodos , Fatores Imunológicos/administração & dosagem , Imunoterapia/métodos , Radioterapia/métodos , Animais , Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/radioterapia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Transplante Heterólogo , Resultado do Tratamento
14.
J Med Chem ; 61(7): 2837-2864, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29562737

RESUMO

In breast cancer, estrogen receptor alpha (ERα) positive cancer accounts for approximately 74% of all diagnoses, and in these settings, it is a primary driver of cell proliferation. Treatment of ERα positive breast cancer has long relied on endocrine therapies such as selective estrogen receptor modulators, aromatase inhibitors, and selective estrogen receptor degraders (SERDs). The steroid-based anti-estrogen fulvestrant (5), the only approved SERD, is effective in patients who have not previously been treated with endocrine therapy as well as in patients who have progressed after receiving other endocrine therapies. Its efficacy, however, may be limited due to its poor physicochemical properties. We describe the design and synthesis of a series of potent benzothiophene-containing compounds that exhibit oral bioavailability and preclinical activity as SERDs. This article culminates in the identification of LSZ102 (10), a compound in clinical development for the treatment of ERα positive breast cancer.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/síntese química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tiofenos/síntese química , Tiofenos/farmacologia , Animais , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Desenho de Fármacos , Descoberta de Drogas , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Moduladores Seletivos de Receptor Estrogênico/farmacocinética , Tiofenos/química , Tiofenos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Immunol ; 200(1): 177-185, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150567

RESUMO

Although prophylactic vaccines provide protective humoral immunity against infectious agents, vaccines that elicit potent CD8 T cell responses are valuable tools to shape and drive cellular immunity against cancer and intracellular infection. In particular, IFN-γ-polarized cytotoxic CD8 T cell immunity is considered optimal for protective immunity against intracellular Ags. Suppressor of cytokine signaling (SOCS)1 is a cross-functional negative regulator of TLR and cytokine receptor signaling via degradation of the receptor-signaling complex. We hypothesized that loss of SOCS1 in dendritic cells (DCs) would improve T cell responses by accentuating IFN-γ-directed immune responses. We tested this hypothesis using a recombinant Listeria monocytogenes vaccine platform that targets CD11c+ DCs in mice in which SOCS1 is selectively deleted in all CD11c+ cells. Unexpectedly, in mice lacking SOCS1 expression in CD11c+ cells, we observed a decrease in CD8+ T cell response to the L. monocytogenes vaccine. NK cell responses were also decreased in mice lacking SOCS1 expression in CD11c+ cells but did not explain the defect in CD8+ T cell immunity. We found that DCs lacking SOCS1 expression were functional in driving Ag-specific CD8+ T cell expansion in vitro but that this process was defective following infection in vivo. Instead, monocyte-derived innate TNF-α and inducible NO synthase-producing DCs dominated the antibacterial response. Thus, loss of SOCS1 in CD11c+ cells skewed the balance of immune response to infection by increasing innate responses while decreasing Ag-specific adaptive responses to infectious Ags.


Assuntos
Vacinas Bacterianas/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Imunidade Adaptativa , Animais , Antígeno CD11c/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Imunidade Inata , Interferon gama/metabolismo , Células Matadoras Naturais/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 1 Supressora da Sinalização de Citocina/genética
18.
PLoS One ; 12(11): e0187532, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29135982

RESUMO

Human papilloma virus positive (HPV+) tumors represent a large proportion of anal, vulvar, vaginal, cervical and head and neck squamous carcinomas (HNSCC) and late stage invasive disease is thought to originate from a premalignant state. Cyclic dinucleotides that activate STimulator of INterferon Genes (STING) have been shown to cause rapid regression of a range of advanced tumors. We aimed to investigate STING ligands as a novel treatment for papilloma. We tested therapies in a spontaneous mouse model of papilloma of the face and anogenital region that histologically resembles human HPV-associated papilloma. We demonstrate that STING ligands cause rapid regression of papilloma, associated with T cell infiltration, and are significantly more effective than Imiquimod, a current immunotherapy for papilloma. In humans, we show that STING is expressed in the basal layer of normal skin and lost during keratinocyte differentiation. We found STING was expressed in all HPV-associated cervical and anal dysplasia and was strongly expressed in the cancer cells of HPV+ HNSCC but not in HPV-unrelated HNSCC. We found no strong association between STING expression and progressive disease in non-HPV oral dysplasia and oral pre-malignancies that are not HPV-related. These data demonstrate that STING is expressed in basal cells of the skin and is retained in HPV+ pre-malignancies and advanced cancers, but not in HPV-unrelated HNSCC. However, using a murine HNSCC model that does not express STING, we demonstrate that STING ligands are an effective therapy regardless of expression of STING by the cancer cells.


Assuntos
Alphapapillomavirus/isolamento & purificação , Proteínas de Membrana/metabolismo , Neoplasias/virologia , Lesões Pré-Cancerosas/virologia , Animais , Feminino , Humanos , Ligantes , Masculino , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/metabolismo
19.
Int J Radiat Oncol Biol Phys ; 99(2): 362-373, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28871985

RESUMO

Novel ligands that target Toll-like receptors and other innate recognition pathways represent a potent strategy for modulating innate immunity to generate antitumor immunity. Although many of the current clinically successful immunotherapies target adaptive T-cell responses, both preclinical and clinical studies suggest that adjuvants have the potential to enhance the scope and efficacy of cancer immunotherapy. Radiation may be a particularly good partner to combine with innate immune therapies, because it is a highly efficient means to kill cancer cells but may fail to send the appropriate inflammatory signals needed to act as an efficient endogenous vaccine. This may explain why although radiation therapy is a highly used cancer treatment, true abscopal effects-regression of disease outside the field without additional systemic therapy-are extremely rare. This review focuses on efforts to combine innate immune stimuli as adjuvants with radiation, creating a distinct and complementary approach from T cell-targeted therapies to enhance antitumor immunity.


Assuntos
Imunidade Inata , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/radioterapia , Terapia Combinada/métodos , Proteína DEAD-box 58/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptores Imunológicos , Linfócitos T/imunologia , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
mBio ; 8(3)2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465426

RESUMO

The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy's potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity.IMPORTANCE The type I interferon system is part of the innate immune response that has evolved in vertebrates as a first line of broad-spectrum immunological defense against an unknowable diversity of microbial, especially viral, pathogens. Here, we characterize a novel small molecule that artificially activates this response and in so doing generates a cellular state antagonistic to growth of currently emerging viruses: Zika virus, Chikungunya virus, and dengue virus. We also show that this molecule is capable of eliciting cellular responses that are predictive of establishment of adaptive immunity. As such, this agent may represent a powerful and multipronged therapeutic tool to combat emerging and other viral diseases.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/agonistas , Antivirais/farmacologia , Benzopiranos/farmacologia , Vírus Chikungunya/fisiologia , Vírus da Dengue/fisiologia , Tiadiazóis/farmacologia , Replicação Viral , Zika virus/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antivirais/química , Antivirais/isolamento & purificação , Benzopiranos/química , Benzopiranos/isolamento & purificação , Linhagem Celular , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Citocinas/biossíntese , Replicação do DNA/efeitos dos fármacos , Dengue/tratamento farmacológico , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/metabolismo , Descoberta de Drogas , Edição de Genes , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata/efeitos dos fármacos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/efeitos dos fármacos , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Tiadiazóis/química , Tiadiazóis/isolamento & purificação , Zika virus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...