Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 35(10): 2181-2190, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28135014

RESUMO

Bone healing, biocompatibility, and safety employing the IlluminOss System (IS), comprised of an inflatable balloon filled with photopolymerizable liquid monomer, was evaluated in New Zealand white rabbits. Successful bone healing and callus remodeling over 6 months was demonstrated radiologically and histologically with IS implants in fenestrated femoral cortices. Biocompatibility was demonstrated with IS implants in brushed, flushed femoral intramedullary spaces, eliciting no adverse, local, or systemic responses and with similar biocompatibility to K-wires in contralateral femurs up to 1 year post-implant. Lastly simulated clinical failures demonstrated the safety of IS implants up to 1 year in the presence of liquid or polymerized polymer within the intramedullary space. Polymerized material displayed cortical bone and vasculature effects comparable to mechanical disruption of the endosteum. In the clinically unlikely scenario with no remediation or polymerization, a high dose monomer injection resulted in marked necrosis of cortical bone, as well as associated vasculature, endosteum, and bone marrow. Overall, when polymerized and hardened within bone intramedullary spaces, this light curable monomer system may provide a safe and effective method for fracture stabilization. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2181-2190, 2017.


Assuntos
Fraturas do Fêmur/terapia , Fixação Interna de Fraturas/instrumentação , Animais , Feminino , Consolidação da Fratura , Teste de Materiais , Procedimentos Cirúrgicos Minimamente Invasivos , Coelhos
2.
J Biomed Mater Res B Appl Biomater ; 104(2): 291-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25772144

RESUMO

Percutaneous intramedullary fixation may provide an ideal method for stabilization of bone fractures, while avoiding the need for large tissue dissections. Tibiae in 18 sheep were treated with an intramedullary photodynamic bone stabilization system (PBSS) that comprised a polyethylene terephthalate (Dacron) balloon filled with a monomer, cured with visible light in situ, and then harvested at 30, 90, or 180 days. In additional 40 sheep, a midshaft tibial osteotomy was performed and stabilized with external fixators or external fixators combined with the PBSS and evaluated at 8, 12, and 26 weeks. Healing and biocompatibility were evaluated by radiographic analysis, micro-computed tomography, and histopathology. In nonfractured sheep tibiae, PBSS implants conformably filled the medullary canal, while active cortical bone remodeling and apposition of new periosteal and/or endosteal bone was observed with no significant macroscopic or microscopic observations. Fractured sheep tibiae exhibited increased bone formation inside the osteotomy gap, with no significant difference when fixation was augmented by PBSS implants. Periosteal callus size gradually decreased over time and was similar in both treatment groups. No inhibition of endosteal bone remodeling or vascularization was observed with PBSS implants. Intramedullary application of a light-curable PBSS is a biocompatible, feasible method for fracture fixation.


Assuntos
Substitutos Ósseos , Fixadores Externos , Consolidação da Fratura , Luz , Fraturas da Tíbia/terapia , Animais , Substitutos Ósseos/efeitos adversos , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Teste de Materiais/métodos , Ovinos
3.
J Hypertens ; 32(8): 1678-91; discussion 1691-2, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24875181

RESUMO

OBJECTIVE: To evaluate the safety and effectiveness of different bipolar radiofrequency system algorithms in interrupting the renal sympathetic nerves and reducing renal norepinephrine in a healthy porcine model. METHODS: A porcine model (N = 46) was used to investigate renal norepinephrine levels and changes to renal artery tissues and nerves following percutaneous renal denervation with radiofrequency bipolar electrodes mounted on a balloon catheter. Parameters of the radiofrequency system (i.e. electrode length and energy delivery algorithm), and the effects of single and longitudinal treatments along the artery were studied with a 7-day model in which swine received unilateral radiofrequency treatments. Additional sets of animals were used to examine norepinephrine and histological changes 28 days following bilateral percutaneous radiofrequency treatment or surgical denervation; untreated swine were used for comparison of renal norepinephrine levels. RESULTS: Seven days postprocedure, norepinephrine concentrations decreased proportionally to electrode length, with 81, 60 and 38% reductions (vs. contralateral control) using 16, 4 and 2-mm electrodes, respectively. Applying a temperature-control algorithm with the 4-mm electrodes increased efficacy, with a mean 89.5% norepinephrine reduction following a 30-s treatment at 68°C. Applying this treatment along the entire artery length affected more nerves vs. a single treatment, resulting in superior norepinephrine reduction 28 days following bilateral treatment. CONCLUSION: Percutaneous renal artery application of bipolar radiofrequency energy demonstrated safety and resulted in a significant renal norepinephrine content reduction and renal nerve injury compared with untreated controls in porcine models.


Assuntos
Ablação por Cateter/métodos , Norepinefrina/análise , Artéria Renal/inervação , Simpatectomia/métodos , Animais , Pressão Sanguínea , Creatinina/sangue , Frequência Cardíaca , Rim/química , Rim/inervação , Modelos Animais , Artéria Renal/patologia , Suínos , Tirosina 3-Mono-Oxigenase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...