Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Sci Rep ; 14(1): 18176, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107428

RESUMO

This research paper introduces an avant-garde poly-input DC-DC converter (PIDC) meticulously engineered for cutting-edge energy storage and electric vehicle (EV) applications. The pioneering converter synergizes two primary power sources-solar energy and fuel cells-with an auxiliary backup source, an energy storage device battery (ESDB). The PIDC showcases a remarkable enhancement in conversion efficiency, achieving up to 96% compared to the conventional 85-90% efficiency of traditional converters. This substantial improvement is attained through an advanced control strategy, rigorously validated via MATLAB/Simulink simulations and real-time experimentation on a 100 W test bench model. Simulation results reveal that the PIDC sustains stable operation and superior efficiency across diverse load conditions, with a peak efficiency of 96% when the ESDB is disengaged and an efficiency spectrum of 91-95% during battery charging and discharging phases. Additionally, the integration of solar power curtails dependence on fuel cells by up to 40%, thereby augmenting overall system efficiency and sustainability. The PIDC's adaptability and enhanced performance render it highly suitable for a wide array of applications, including poly-input DC-DC conversion, energy storage management, and EV power systems. This innovative paradigm in power conversion and management is poised to significantly elevate the efficiency and reliability of energy storage and utilization in contemporary electric vehicles and renewable energy infrastructures.

2.
Sci Rep ; 14(1): 17968, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095527

RESUMO

As Europe integrates more renewable energy resources, notably offshore wind power, into its super meshed grid, the demand for reliable long-distance High Voltage Direct Current (HVDC) transmission systems has surged. This paper addresses the intricacies of HVDC systems built upon Modular Multi-Level Converters (MMCs), especially concerning the rapid rise of DC fault currents. We propose a novel fault identification and classification for DC transmission lines only by employing Long Short-Term Memory (LSTM) networks integrated with Discrete Wavelet Transform (DWT) for feature extraction. Our LSTM-based algorithm operates effectively under challenging environmental conditions, ensuring high fault resistance detection. A unique three-level relay system with multiple time windows (1 ms, 1.5 ms, and 2 ms) ensures accurate fault detection over large distances. Bayesian Optimization is employed for hyperparameter tuning, streamlining the model's training process. The study shows that our proposed framework exhibits 100% resilience against external faults and disturbances, achieving an average recognition accuracy rate of 99.04% in diverse testing scenarios. Unlike traditional schemes that rely on multiple manual thresholds, our approach utilizes a single intelligently tuned model to detect faults up to 480 ohms, enhancing the efficiency and robustness of DC grid protection.

3.
Sci Rep ; 14(1): 18760, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138275

RESUMO

This research introduces a new technique to control constrained nonlinear systems, named Lyapunov-based neural network model predictive control using a metaheuristic optimization approach. This controller utilizes a feedforward neural network model as a prediction model and employs the driving training based optimization algorithm to resolve the related constrained optimization problem. The proposed controller relies on the simplicity and accuracy of the feedforward neural network model and the convergence speed of the driving training based optimization algorithm. The closed-loop stability of the developed controller is ensured by including the Lyapunov function as a constraint in the cost function. The efficiency of the suggested controller is illustrated by controlling the angular speed of three-phase squirrel cage induction motor. The reached results are contrasted to those of other methods, specifically the fuzzy logic controller optimized by teaching learning-based optimization algorithm, the optimized PID with particle swarm optimization algorithm, the neural network model predictive controller based on particle swarm optimization algorithm, and the neural network model predictive controller using driving training based optimization algorithm. This comparative study showcase that the suggested controller provides good accuracy, quickness and robustness due to the obtained values of the mean absolute error, mean square error root mean square error, enhancement percentage, and computing time in the different simulation cases, and it can be efficiently utilized to control constrained nonlinear systems with fast dynamics.

4.
Sci Rep ; 14(1): 18907, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143313

RESUMO

Early fault detection and diagnosis of grid-connected photovoltaic systems (GCPS) is imperative to improve their performance and reliability. Low-cost edge devices have emerged as innovative solutions for real-time monitoring, reducing latency, and improving response times. In this work, a lightweight Convolutional Neural Network (CNN) is designed and fine-tuned using Energy Valley Optimizer (EVO) for fault diagnosis. The CNN input consists of two-dimensional scalograms generated using Continuous Wavelet Transform (CWT). The proposed diagnosis technique demonstrated superior performance compared to benchmark architectures, namely MobileNet, NASNetMobile, and InceptionV3, achieving higher test accuracies and lower losses on binary and multi-fault classification tasks on balanced, unbalanced, and noisy datasets. Further, a quantitative comparison is conducted with similar recent studies. The obtained results indicate good performance and high reliability of the proposed fault diagnosis method.

5.
Sci Rep ; 14(1): 15543, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969774

RESUMO

This study examined the optimal size of an autonomous hybrid renewable energy system (HRES) for a residential application in Buea, located in the southwest region of Cameroon. Two hybrid systems, PV-Battery and PV-Battery-Diesel, have been evaluated in order to determine which was the better option. The goal of this research was to propose a dependable, low-cost power source as an alternative to the unreliable and highly unstable electricity grid in Buea. The decision criterion for the proposed HRES was the cost of energy (COE), while the system's dependability constraint was the loss of power supply probability (LPSP). The crayfish optimization algorithm (COA) was used to optimize the component sizes of the proposed HRES, and the results were contrasted to those obtained from the whale optimization algorithm (WOA), sine cosine algorithm (SCA), and grasshopper optimization algorithm (GOA). The MATLAB software was used to model the components, criteria, and constraints of this single-objective optimization problem. The results obtained after simulation for LPSP of less than 1% showed that the COA algorithm outperformed the other three techniques, regardless of the configuration. Indeed, the COE obtained using the COA algorithm was 0.06%, 0.12%, and 1% lower than the COE provided by the WOA, SCA, and GOA algorithms, respectively, for the PV-Battery configuration. Likewise, for the PV-Battery-Diesel configuration, the COE obtained using the COA algorithm was 0.065%, 0.13%, and 0.39% lower than the COE provided by the WOA, SCA, and GOA algorithms, respectively. A comparative analysis of the outcomes obtained for the two configurations indicated that the PV-Battery-Diesel configuration exhibited a COE that was 4.32% lower in comparison to the PV-Battery configuration. Finally, the impact of the LPSP reduction on the COE was assessed in the PV-Battery-Diesel configuration. The decrease in LPSP resulted in an increase in COE owing to the nominal capacity of the diesel generator.

6.
Sci Rep ; 14(1): 14977, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38951160

RESUMO

Enhancing the efficiency of the electric vehicle's powertrain becomes a crucial focus, wherein the control system for the traction motor plays a significant role. This paper presents a novel electric vehicle traction motor control system based on a robust predictive direct torque control approach, an improved version of the conventional DTC, where the traditional switching table and the hysteresis regulators are substituted with a predictive block based on an optimization algorithm. Additionally, a robust predictive speed loop regulator is employed instead of the proportional-integral regulator, which integrates a new cost function with a finite horizon, incorporating integral action into the control law based on a Taylor series expansion. This technique's primary benefit is its independence from the necessity to measure and observe external disturbances, as well as uncertainties related to parameters. The effectiveness of the suggested system was confirmed through simulation and experimental results under the OPAL-RT platform. The findings indicate that the proposed approach outperforms the conventional method in terms of rejecting disturbances, exhibiting robustness to variations in parameters, and minimizing torque ripple.

7.
Sci Rep ; 14(1): 15209, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956157

RESUMO

Load frequency control (LFC) plays a critical role in ensuring the reliable and stable operation of power plants and maintaining a quality power supply to consumers. In control engineering, an oscillatory behavior exhibited by a system in response to control actions is referred to as "Porpoising". This article focused on investigating the causes of the porpoising phenomenon in the context of LFC. This paper introduces a novel methodology for enhancing the performance of load frequency controllers in power systems by employing rat swarm optimization (RSO) for tuning and detecting the porpoising feature to ensure stability. The study focuses on a single-area thermal power generating station (TPGS) subjected to a 1% load demand change, employing MATLAB simulations for analysis. The proposed RSO-based PID controller is compared against traditional methods such as the firefly algorithm (FFA) and Ziegler-Nichols (ZN) technique. Results indicate that the RSO-based PID controller exhibits superior performance, achieving zero frequency error, reduced negative peak overshoot, and faster settling time compared to other methods. Furthermore, the paper investigates the porpoising phenomenon in PID controllers, analyzing the location of poles in the s-plane, damping ratio, and control actions. The RSO-based PID controller demonstrates enhanced stability and resistance to porpoising, making it a promising solution for power system control. Future research will focus on real-time implementation and broader applications across different control systems.

9.
Sci Rep ; 14(1): 15124, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956387

RESUMO

Power systems exhibit nonlinearity. causing dynamic instability and complex power oscillations. This research proposes an innovative strategy using the Novel Bat Algorithm (NBA) to achieve ideal Power System Stabilizers (PSSs) in a multimachine power system. The approach shifts electromechanical modes to specific areas in the s-plane. Enhancing the multi-machine power system and establishing stabilizer parameters for dynamic performance. The study examines the designed approach aptitude for standard lead-lag PSSs configurations. In order to elevate the global search problem and transfer some static operators for the optimum optimization process. the chaos mapping. also known as CNBA. is introduced into NBA. Four different forms of chaos maps are compared in experiments to resolve unconstrained mathematical issues in order to illustrate CNBA performance. In any other case. the challenge of designing PSS under a wide range of loading situations is transformed into an optimization challenge with the damping ratio of electromechanical modes with low damping as the target function. The optimal stabilizers' gains are gotten by employing the CNBA algorithm. Second plan. an effective technique is astutely established to delineate the PSS location and quantity using CNBA and another side using participation factor. To examine the efficacy of the proposed CNBA-based PSS on a large system; it is tested on the interconnected of New-England/New-York (16 generators and 68 buses) power grid. and verified by comparative study with NBA through eigenvalue analysis and nonlinear simulation to provide evidence the algorithmic competence of CNBA. The CNBA approach yields a minimum damping ratio of 37%. which is consistent with the its eigenvalue. In contrast, the NBA approach achieves a minimum damping ratio of 31%. The simulation results reveal the fine performance of the proposed CNBA-PSS in a convincing manner and its capacity to provide an excellent damping for inter-area and local oscillations under diverse operating cases compared to NBA-PSS then in the case of PSS location.

10.
Sci Rep ; 14(1): 15180, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956412

RESUMO

This paper presents a novel, state-of-the-art predictive control architecture that addresses the computational complexity and limitations of conventional predictive control methodologies while enhancing the performance efficacy of predictive control techniques applied to three-level voltage source converters (NPC inverters). This framework's main goal is to decrease the number of filtered voltage lifespan vectors in each sector, which will increase the overall efficiency of the control system and allow for common mode voltage reduction in three-level voltage source converters. Two particular tactics are described in order to accomplish this. First, a statistical approach is presented for the proactive detection of potential voltage vectors, with an emphasis on selecting and including the vectors that are most frequently used. This method lowers the computational load by limiting the search space needed to find the best voltage vectors. Then, using statistical analysis, a plan is presented to split the sectors into two separate parts, so greatly limiting the number of voltage vectors. The goal of this improved predictive control methodology is to reduce computing demands and mitigate common mode voltage. The suggested strategy's resilience is confirmed in a range of operational scenarios using simulations and empirical evaluation. The findings indicate a pronounced enhancement in computational efficiency and a notable diminution in common mode voltage, thereby underscoring the efficacy of the proposed methodology. This increases their ability to incorporate renewable energy sources into the electrical grid.

11.
Sci Rep ; 14(1): 15652, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977792

RESUMO

The use of plug-in hybrid electric vehicles (PHEVs) provides a way to address energy and environmental issues. Integrating a large number of PHEVs with advanced control and storage capabilities can enhance the flexibility of the distribution grid. This study proposes an innovative energy management strategy (EMS) using an Iterative map-based self-adaptive crystal structure algorithm (SaCryStAl) specifically designed for microgrids with renewable energy sources (RESs) and PHEVs. The goal is to optimize multi-objective scheduling for a microgrid with wind turbines, micro-turbines, fuel cells, solar photovoltaic systems, and batteries to balance power and store excess energy. The aim is to minimize microgrid operating costs while considering environmental impacts. The optimization problem is framed as a multi-objective problem with nonlinear constraints, using fuzzy logic to aid decision-making. In the first scenario, the microgrid is optimized with all RESs installed within predetermined boundaries, in addition to grid connection. In the second scenario, the microgrid operates with a wind turbine at rated power. The third case study involves integrating plug-in hybrid electric vehicles (PHEVs) into the microgrid in three charging modes: coordinated, smart, and uncoordinated, utilizing standard and rated RES power. The SaCryStAl algorithm showed superior performance in operation cost, emissions, and execution time compared to traditional CryStAl and other recent optimization methods. The proposed SaCryStAl algorithm achieved optimal solutions in the first scenario for cost and emissions at 177.29 €ct and 469.92 kg, respectively, within a reasonable time frame. In the second scenario, it yielded optimal cost and emissions values of 112.02 €ct and 196.15 kg, respectively. Lastly, in the third scenario, the SaCryStAl algorithm achieves optimal cost values of 319.9301 €ct, 160.9827 €ct and 128.2815 €ct for uncoordinated charging, coordinated charging and smart charging modes respectively. Optimization results reveal that the proposed SaCryStAl outperformed other evolutionary optimization algorithms, such as differential evolution, CryStAl, Grey Wolf Optimizer, particle swarm optimization, and genetic algorithm, as confirmed through test cases.

12.
Sci Rep ; 14(1): 15694, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977838

RESUMO

This study investigates the use of carbonized Himalayan Chir Pine Biomass, known as Chir Pine Activated Carbon (CPAC), as an eco-friendly and cost-effective adsorbent for efficient industrial dye removal, with a focus on environmental sustainability. By applying different additive treatments, four adsorbents (C1, C2, C3, and C4) were formulated. CPAC was synthesized through pyrolysis and characterized using various analytical techniques including FE-SEM, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The adsorption capacity of CPAC was evaluated using Malachite Green (MG) dye as a model contaminant. FE-SEM images revealed high porosity (~ 10 µm) and a high surface area (119.886 m2/g) as confirmed by BET testing. CPAC effectively removed MG dye within 30 min at a solution pH of 7. Langmuir and Freundlich isotherm models indicated both monolayer and multilayer adsorption, while kinetic models suggested chemisorption. The regeneration efficiency was assessed using 0.1 N HCl over five consecutive cycles, with C4 demonstrating a high regeneration tendency of 85% and only a 9% reduction in adsorption ability after the fifth cycle. The developed CPAC shows excellent potential for use in the textile, paper, and leather industries for industrial dye adsorption, contributing to the protection of aquatic ecosystems. Additionally, CPAC can be utilized in other water and air purification applications.

13.
Sci Rep ; 14(1): 13406, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862672

RESUMO

This article investigates an inventive methodology for precisely and efficiently controlling photovoltaic emulating (PVE) prototypes, which are employed in the assessment of solar systems. A modification to the Shift controller (SC), which is regarded as a leading PVE controller, is proposed. In addition to efficiency and accuracy, the novel controller places a high emphasis on improving transient performance. The novel piecewise linear-logarithmic adaptation utilized by the Modified-Shift controller (M-SC) enables the controller to linearly adapt to the load burden within a specified operating range. At reduced load resistances, the transient sped of the PVE can be increased through the implementation of this scheme. An exceedingly short settling time of the PVE is ensured by a logarithmic modification of the control action beyond the critical point. In order to analyze the M-SC in the context of PVE control, numerical investigations implemented in MATLAB/Simulink (Version: Simulink 10.4, URL: https://in.mathworks.com/products/simulink.html ) were utilized. To assess the effectiveness of the suggested PVE, three benchmarking profiles are presented: eight scenarios involving irradiance/PVE load, continuously varying irradiance/temperature, and rapidly changing loads. These profiles include metrics such as settling time, efficiency, Integral of Absolute Error (IAE), and percentage error (epve). As suggested, the M-SC attains an approximate twofold increase in speed over the conventional SC, according to the findings. This is substantiated by an efficiency increase of 2.2%, an expeditiousness enhancement of 5.65%, and an IAE rise of 5.65%. Based on the results of this research, the new M-SC enables the PVE to experience perpetual dynamic operation enhancement, making it highly suitable for evaluating solar systems in ever-changing environments.

14.
Sci Rep ; 14(1): 12775, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834739

RESUMO

This paper presents an innovative control scheme designed to significantly enhance the power factor of AC/DC boost rectifiers by integrating an adaptive neuro-fuzzy inference system (ANFIS) with predictive current control. The innovative control strategy addresses key challenges in power quality and energy efficiency, demonstrating exceptional performance under diverse operating conditions. Through rigorous simulation, the proposed system achieves precise input current shaping, resulting in a remarkably low total harmonic distortion (THD) of 3.5%, which is well below the IEEE-519 standard threshold of 5%. Moreover, the power factor reaches an outstanding 0.990, indicating highly efficient energy utilization and near-unity power factor operation. To validate the theoretical findings, a 500 W laboratory prototype was implemented using the dSPACE ds1104 digital controller. Steady-state analysis reveals sinusoidal input currents with minimal THD and a power factor approaching unity, thereby enhancing grid stability and energy efficiency. Transient response tests further demonstrate the system's robustness against load and voltage fluctuations, maintaining output voltage stability within an 18 V overshoot and a 20 V undershoot during load changes, and achieving rapid response times as low as 0.2 s. Comparative evaluations against conventional methods underscore the superiority of the proposed control strategy in terms of both performance and implementation simplicity. By harnessing the strengths of ANFIS-based voltage regulation and predictive current control, this scheme offers a robust solution to power quality issues in AC/DC boost rectifiers, promising substantial energy savings and improved grid stability. The results affirm the potential of the proposed system to set new benchmarks in power factor correction technology.

15.
Sci Rep ; 14(1): 13105, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849420

RESUMO

A Virtual Power Plant (VPP) is a centralized energy system that manages, and coordinates distributed energy resources, integrating them into a unified entity. While the physical assets may be dispersed across various locations, the VPP integrates them into a virtual unified entity capable of responding to grid demands and market signals. This paper presents a tri-level hierarchical coordinated operational framework of VPP. Firstly, an Improved Pelican Optimization Algorithm (IPOA) is introduced to optimally schedule Distributed Energy Resources (DERs) within the VPP, resulting in a significant reduction in generation costs. Comparative analysis against conventional algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) demonstrates IPOA's superior performance, achieving an average reduction of 8.5% in generation costs across various case studies. The second stage focuses on securing the optimized generation data from rising cyber threats, employing the capabilities of machine learning, preferably, a convolutional autoencoder to learn the normal patterns of the optimized data to detect deviations from the optimized generation data to prevent suboptimal decisions. The model exhibits exceptional performance in detecting manipulated data, with a False Positive Rate (FPR) of 1.92% and a Detection Accuracy (DA) of 98.06%, outperforming traditional detection techniques. Lastly, the paper delves into the dynamic nature of the day ahead market that the VPP participates in. In responding to the grid by selling its optimized generated power via the day-ahead market, the VPP employs the Prophet model, another machine learning technique to forecast the spot market price for the day-ahead to mitigate the adverse effects of price volatility. By utilizing Prophet forecasts, the VPP achieves an average revenue increase of 15.3% compared to scenarios without price prediction, emphasizing the critical role of predictive analytics in optimizing economic gains. This tri-level coordinated approach adopted addresses key challenges in the energy sector, facilitating progress towards achieving universal access to clean and affordable energy.

16.
Sci Rep ; 14(1): 13165, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849456

RESUMO

Wireless charging of Electric Vehicles (EVs) has been extensively researched in the realm of electric cars, offering a convenient method. Nonetheless, there has been a scarcity of experiments conducted on low-power electric vehicles. To establish a wireless power transfer system for an electric vehicle, optimal power and transmission efficiency necessitate arranging the coils coaxially. In wireless charging systems, coils often experience angular and lateral misalignments. In this paper, a new alignment strategy is introduced to tackle the misalignment problem between the transmitter and receiver coils in the wireless charging of Electric Vehicles (EVs). The study involves the design and analysis of a coil, considering factors such as mutual inductance and efficiency. Wireless coils with angular misalignment are modelled in Ansys Maxwell simulation software. The proposed practical EV system aims to align the coils using angular motion, effectively reducing misalignment during the parking of two-wheelers. This is achieved by tilting the transmitter coil in the desired direction. Furthermore, micro sensing coils are employed to identify misalignment and facilitate automatic alignment. Additionally, adopting a power control technique becomes essential to achieve both constant current (CC) and constant voltage (CV) modes during battery charging. Integrating CC and CV modes is crucial for efficiently charging lithium-ion batteries, ensuring prolonged lifespan and optimal capacity utilization. The developed system can improve the efficiency of the wireless charging system to 90.3% with a 24 V, 16 Ah Lithium Ion Phosphate (LiFePO4) battery at a 160 mm distance between the coils.

17.
Sci Rep ; 14(1): 13590, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866866

RESUMO

Cameroon is currently grappling with a significant energy crisis, which is adversely affecting its economy due to cost, reliability, and availability constraints within the power infrastructure. While electrochemical storage presents a potential remedy, its implementation faces hurdles like high costs and technical limitations. Conversely, generator-based systems, although a viable alternative, bring their own set of issues such as noise pollution and demanding maintenance requirements. This paper meticulously assesses a novel hybrid energy system specifically engineered to meet the diverse energy needs of Douala, Cameroon. By employing advanced simulation techniques, especially the Hybrid Optimization Model for Electric Renewable (HOMER) Pro program, the study carefully examines the intricacies of load demands across distinct consumer categories while accommodating varied pricing models. The paper offers a detailed analysis of the proposed grid-connected PV/Diesel/Generator system, aiming to gauge its performance, economic feasibility, and reliability in ensuring uninterrupted energy supply. Notably, the study unveils significant potential for cost reduction per kilowatt-hour, indicating promising updated rates of $0.07/kW, $0.08/kW, and $0.06/kW for low, medium, and high usage groups, respectively. Furthermore, the research underscores the importance of overcoming operational challenges and constraints such as temperature fluctuations, equipment costs, and regulatory compliance. It also acknowledges the impact of operational nuances like maintenance and grid integration on system efficiency. As the world progresses towards renewable energy adoption and hybrid systems, this investigation lays a strong foundation for future advancements in renewable energy integration and energy management strategies. It strives to create a sustainable energy ecosystem in Cameroon and beyond, where hybrid energy systems play a pivotal role in mitigating power deficiencies and supporting sustainable development.

18.
Sci Rep ; 14(1): 13962, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886513

RESUMO

Electricity generation in Islanded Urban Microgrids (IUMG) now relies heavily on a diverse range of Renewable Energy Sources (RES). However, the dependable utilization of these sources hinges upon efficient Electrical Energy Storage Systems (EESs). As the intermittent nature of RES output and the low inertia of IUMGs often lead to significant frequency fluctuations, the role of EESs becomes pivotal. While these storage systems effectively mitigate frequency deviations, their high costs and elevated power density requirements necessitate alternative strategies to balance power supply and demand. In recent years, substantial attention has turned towards harnessing Electric Vehicle (EV) batteries as Mobile EV Energy Storage (MEVES) units to counteract frequency variations in IUMGs. Integrating MEVES into the IUMG infrastructure introduces complexity and demands a robust control mechanism for optimal operation. Therefore, this paper introduces a robust, high-order degree of freedom cascade controller known as the 1PD-3DOF-PID (1 + Proportional + Derivative-Three Degrees Of Freedom Proportional-Integral-Derivative) controller for Load Frequency Control (LFC) in IUMGs integrated with MEVES. The controller's parameters are meticulously optimized using the Coati Optimization Algorithm (COA) which mimics coati behavior in nature, marking its debut in LFC of IUMG applications. Comparative evaluations against classical controllers and algorithms, such as 3DOF-PID, PID, Reptile Search Algorithm, and White Shark Optimizer, are conducted under diverse IUMG operating scenarios. The testbed comprises various renewable energy sources, including wind turbines, photovoltaics, Diesel Engine Generators (DEGs), Fuel Cells (FCs), and both Mobile and Fixed energy storage units. Managing power balance in this entirely renewable environment presents a formidable challenge, prompting an examination of the influence of MEVES, DEG, and FC as controllable units to mitigate active power imbalances. Metaheuristic algorithms in MATLAB-SIMULINK platforms are employed to identify the controller's gains across all case studies, ensuring the maintenance of IUMG system frequency within predefined limits. Simulation results convincingly establish the superiority of the proposed controller over other counterparts. Furthermore, the controller's robustness is rigorously tested under ± 25% variations in specific IUMG parameters, affirming its resilience. Statistical analyses reinforce the robust performance of the COA-based 1PD-3DOF-PID control method. This work highlights the potential of the COA Technique-optimized 1PD-3DOF-PID controller for IUMG control, marking its debut application in the LFC domain for IUMGs. This comprehensive study contributes valuable insights into enhancing the reliability and stability of Islanded Urban Microgrids while integrating Mobile EV Energy Storage, marking a significant advancement in the field of Load-Frequency Control.

19.
Sci Rep ; 14(1): 13946, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886499

RESUMO

This study looks into how to make proton exchange membrane (PEM) fuel cells work more efficiently in environments that change over time using new Maximum Power Point Tracking (MPPT) methods. We evaluate the efficacy of Flying Squirrel Search Optimization (FSSO) and Cuckoo Search (CS) algorithms in adapting to varying conditions, including fluctuations in pressure and temperature. Through meticulous simulations and analyses, the study explores the collaborative integration of these techniques with boost converters to enhance reliability and productivity. It was found that FSSO consistently works better than CS, achieving an average increase of 12.5% in power extraction from PEM fuel cells in a variety of operational situations. Additionally, FSSO exhibits superior adaptability and convergence speed, achieving the maximum power point (MPP) 25% faster than CS. These findings underscore the substantial potential of FSSO as a robust and efficient MPPT method for optimizing PEM fuel cell systems. The study contributes quantitative insights into advancing green energy solutions and suggests avenues for future exploration of hybrid optimization methods.

20.
Sci Rep ; 14(1): 10267, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704399

RESUMO

This research discusses the solar and wind sourcesintegration in aremote location using hybrid power optimization approaches and a multi energy storage system with batteries and supercapacitors. The controllers in PV and wind turbine systems are used to efficiently operate maximum power point tracking (MPPT) algorithms, optimizing the overall system performance while minimizing stress on energy storage components. More specifically, on PV generator, the provided method integrating the Perturb & Observe (P&O) and Fuzzy Logic Control (FLC) methods. Meanwhile, for the wind turbine, the proposed approach combines the P&O and FLC methods. These hybrid MPPT strategies for photovoltaic (PV) and wind turbine aim to optimize its operation, taking advantage of the complementary features of the two methods. While the primary aim of these hybrid MPPT strategies is to optimize both PV and wind turbine, therefore minimizing stress on the storage system, they also aim to efficiently supply electricity to the load. For storage, in this isolated renewable energy system, batteries play a crucial role due to several specific benefits and reasons. Unfortunately, their energy density is still relatively lower compared to some other forms of energy storage. Moreover, they have a limited number of charge-discharge cycles before their capacity degrades significantly. Supercapacitors (SCs) provide significant advantages in certain applications, particularly those that need significant power density, quick charging and discharging, and long cycle life. However, their limitations, such as lower energy density and specific voltage requirements, make them most effective when combined with other storage technologies, as batteries. Furthermore, their advantages are enhanced, result a more dependable and cost-effective hybrid energy storage system (HESS). The paper introduces a novel algorithm for power management designed for an efficient control. Moreover, it focuses on managing storage systems to keep their state of charge (SOC) within defined range. The algorithm is simple and effective. Furthermore, it ensures the longevity of batteries and SCs while maximizing their performance. The results reveal that the suggested method successfully keeps the limits batteries and SCs state of charge (SOC). To show the significance of system design choices and the impact on the battery's SOC, which is crucial for the longevity and overall performance of the energy storage components, a comparison in of two systems have been made. A classical system with one storage (PV/wind turbine/batteries) and the proposed system with HESS (PV/wind turbine system with batteries). The results show that the suggested scenario investigated with both wind and solar resources appears to be the optimum solution for areas where the two resources are both significant and complementary. The balance between the two resources seems to contribute to less stress on storage components, potentially leading to a longer lifespan. An economical study has been made, using the Homer Pro software, to show the feasibility of the proposed system in the studied area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA