Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1126, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321046

RESUMO

Highly pathogenic avian influenza virus (HPAIV) A H5, particularly clade 2.3.4.4, has caused worldwide outbreaks in domestic poultry, occasional spillover to humans, and increasing deaths of diverse species of wild birds since 2014. Wild bird migration is currently acknowledged as an important ecological process contributing to the global dispersal of HPAIV H5. However, this mechanism has not been quantified using bird movement data from different species, and the timing and location of exposure of different species is unclear. We sought to explore these questions through phylodynamic analyses based on empirical data of bird movement tracking and virus genome sequences of clade 2.3.4.4 and 2.3.2.1. First, we demonstrate that seasonal bird migration can explain salient features of the global dispersal of clade 2.3.4.4. Second, we detect synchrony between the seasonality of bird annual cycle phases and virus lineage movements. We reveal the differing exposed bird orders at geographical origins and destinations of HPAIV H5 clade 2.3.4.4 lineage movements, including relatively under-discussed orders. Our study provides a phylodynamic framework that links the bird movement ecology and genomic epidemiology of avian influenza; it highlights the importance of integrating bird behavior and life history in avian influenza studies.


Assuntos
Migração Animal , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Aves , Vírus da Influenza A/genética , Influenza Aviária/transmissão , Filogenia , Aves Domésticas
2.
PLoS Negl Trop Dis ; 17(9): e0011169, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672514

RESUMO

BACKGROUND: Aedes-borne arboviruses cause both seasonal epidemics and emerging outbreaks with a significant impact on global health. These viruses share mosquito vector species, often infecting the same host population within overlapping geographic regions. Thus, comparative analyses of the virus evolutionary and epidemiological dynamics across spatial and temporal scales could reveal convergent trends. METHODOLOGY/PRINCIPAL FINDINGS: Focusing on Mexico as a case study, we generated novel chikungunya and dengue (CHIKV, DENV-1 and DENV-2) virus genomes from an epidemiological surveillance-derived historical sample collection, and analysed them together with longitudinally-collected genome and epidemiological data from the Americas. Aedes-borne arboviruses endemically circulating within the country were found to be introduced multiple times from lineages predominantly sampled from the Caribbean and Central America. For CHIKV, at least thirteen introductions were inferred over a year, with six of these leading to persistent transmission chains. For both DENV-1 and DENV-2, at least seven introductions were inferred over a decade. CONCLUSIONS/SIGNIFICANCE: Our results suggest that CHIKV, DENV-1 and DENV-2 in Mexico share evolutionary and epidemiological trajectories. The southwest region of the country was determined to be the most likely location for viral introductions from abroad, with a subsequent spread into the Pacific coast towards the north of Mexico. Virus diffusion patterns observed across the country are likely driven by multiple factors, including mobility linked to human migration from Central towards North America. Considering Mexico's geographic positioning displaying a high human mobility across borders, our results prompt the need to better understand the role of anthropogenic factors in the transmission dynamics of Aedes-borne arboviruses, particularly linked to land-based human migration.


Assuntos
Aedes , Arbovírus , Humanos , Animais , México/epidemiologia , Arbovírus/genética , América Central/epidemiologia , América do Norte
3.
Science ; 381(6655): 336-343, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37471538

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) now arise in the context of heterogeneous human connectivity and population immunity. Through a large-scale phylodynamic analysis of 115,622 Omicron BA.1 genomes, we identified >6,000 introductions of the antigenically distinct VOC into England and analyzed their local transmission and dispersal history. We find that six of the eight largest English Omicron lineages were already transmitting when Omicron was first reported in southern Africa (22 November 2021). Multiple datasets show that importation of Omicron continued despite subsequent restrictions on travel from southern Africa as a result of export from well-connected secondary locations. Initiation and dispersal of Omicron transmission lineages in England was a two-stage process that can be explained by models of the country's human geography and hierarchical travel network. Our results enable a comparison of the processes that drive the invasion of Omicron and other VOCs across multiple spatial scales.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , África Austral , COVID-19/transmissão , COVID-19/virologia , Genômica , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Filogenia
4.
Nature ; 610(7930): 154-160, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952712

RESUMO

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/virologia , Cidades/epidemiologia , Busca de Comunicante , Inglaterra/epidemiologia , Genoma Viral/genética , Humanos , Quarentena/legislação & jurisprudência , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/isolamento & purificação , Viagem/legislação & jurisprudência
5.
Math Biosci ; 349: 108824, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537550

RESUMO

The COVID-19 epidemic continues to rage in many parts of the world. In the UK alone, an array of mathematical models have played a prominent role in guiding policymaking. Whilst considerable pedagogical material exists for understanding the basics of transmission dynamics modelling, there is a substantial gap between the relatively simple models used for exposition of the theory and those used in practice to model the transmission dynamics of COVID-19. Understanding these models requires considerable prerequisite knowledge and presents challenges to those new to the field of epidemiological modelling. In this paper, we introduce an open-source R package, comomodels, which can be used to understand the complexities of modelling the transmission dynamics of COVID-19 through a series of differential equation models. Alongside the base package, we describe a host of learning resources, including detailed tutorials and an interactive web-based interface allowing dynamic investigation of the model properties. We then use comomodels to illustrate three key lessons in the transmission of COVID-19 within R Markdown vignettes.


Assuntos
COVID-19 , Epidemias , Humanos , Aprendizagem , Modelos Teóricos
6.
Nat Comput Sci ; 2(4): 223-233, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38177553

RESUMO

To study the trade-off between economic, social and health outcomes in the management of a pandemic, DAEDALUS integrates a dynamic epidemiological model of SARS-CoV-2 transmission with a multi-sector economic model, reflecting sectoral heterogeneity in transmission and complex supply chains. The model identifies mitigation strategies that optimize economic production while constraining infections so that hospital capacity is not exceeded but allowing essential services, including much of the education sector, to remain active. The model differentiates closures by economic sector, keeping those sectors open that contribute little to transmission but much to economic output and those that produce essential services as intermediate or final consumption products. In an illustrative application to 63 sectors in the United Kingdom, the model achieves an economic gain of between £161 billion (24%) and £193 billion (29%) compared to a blanket lockdown of non-essential activities over six months. Although it has been designed for SARS-CoV-2, DAEDALUS is sufficiently flexible to be applicable to pandemics with different epidemiological characteristics.

7.
Trends Parasitol ; 37(12): 1038-1049, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620561

RESUMO

Genomic epidemiology, which links pathogen genomes with associated metadata to understand disease transmission, has become a key component of outbreak response. Decreasing costs of genome sequencing and increasing computational power provide opportunities to generate and analyse large viral genomic datasets that aim to uncover the spatial scales of transmission, the demographics contributing to transmission patterns, and to forecast epidemic trends. Emerging sources of genomic data and associated metadata provide new opportunities to further unravel transmission patterns. Key challenges include how to integrate genomic data with metadata from multiple sources, how to generate efficient computational algorithms to cope with large datasets, and how to establish sampling frameworks to enable robust conclusions.


Assuntos
Surtos de Doenças , Genoma Viral , Genoma Viral/genética , Genômica
8.
J Int AIDS Soc ; 24 Suppl 5: e25788, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34546657

RESUMO

INTRODUCTION: HIV planning requires granular estimates for the number of people living with HIV (PLHIV), antiretroviral treatment (ART) coverage and unmet need, and new HIV infections by district, or equivalent subnational administrative level. We developed a Bayesian small-area estimation model, called Naomi, to estimate these quantities stratified by subnational administrative units, sex, and five-year age groups. METHODS: Small-area regressions for HIV prevalence, ART coverage and HIV incidence were jointly calibrated using subnational household survey data on all three indicators, routine antenatal service delivery data on HIV prevalence and ART coverage among pregnant women, and service delivery data on the number of PLHIV receiving ART. Incidence was modelled by district-level HIV prevalence and ART coverage. Model outputs of counts and rates for each indicator were aggregated to multiple geographic and demographic stratifications of interest. The model was estimated in an empirical Bayes framework, furnishing probabilistic uncertainty ranges for all output indicators. Example results were presented using data from Malawi during 2016-2018. RESULTS: Adult HIV prevalence in September 2018 ranged from 3.2% to 17.1% across Malawi's districts and was higher in southern districts and in metropolitan areas. ART coverage was more homogenous, ranging from 75% to 82%. The largest number of PLHIV was among ages 35 to 39 for both women and men, while the most untreated PLHIV were among ages 25 to 29 for women and 30 to 34 for men. Relative uncertainty was larger for the untreated PLHIV than the number on ART or total PLHIV. Among clients receiving ART at facilities in Lilongwe city, an estimated 71% (95% CI, 61% to 79%) resided in Lilongwe city, 20% (14% to 27%) in Lilongwe district outside the metropolis, and 9% (6% to 12%) in neighbouring Dowa district. Thirty-eight percent (26% to 50%) of Lilongwe rural residents and 39% (27% to 50%) of Dowa residents received treatment at facilities in Lilongwe city. CONCLUSIONS: The Naomi model synthesizes multiple subnational data sources to furnish estimates of key indicators for HIV programme planning, resource allocation, and target setting. Further model development to meet evolving HIV policy priorities and programme need should be accompanied by continued strengthening and understanding of routine health system data.


Assuntos
Epidemias , Infecções por HIV , Adulto , Antirretrovirais/uso terapêutico , Teorema de Bayes , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Humanos , Malaui/epidemiologia , Masculino , Gravidez , Prevalência
9.
Science ; 373(6557): 889-895, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34301854

RESUMO

Understanding the causes and consequences of the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern is crucial to pandemic control yet difficult to achieve because they arise in the context of variable human behavior and immunity. We investigated the spatial invasion dynamics of lineage B.1.1.7 by jointly analyzing UK human mobility, virus genomes, and community-based polymerase chain reaction data. We identified a multistage spatial invasion process in which early B.1.1.7 growth rates were associated with mobility and asymmetric lineage export from a dominant source location, enhancing the effects of B.1.1.7's increased intrinsic transmissibility. We further explored how B.1.1.7 spread was shaped by nonpharmaceutical interventions and spatial variation in previous attack rates. Our findings show that careful accounting of the behavioral and epidemiological context within which variants of concern emerge is necessary to interpret correctly their observed relative growth rates.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2 , COVID-19/prevenção & controle , COVID-19/transmissão , Teste de Ácido Nucleico para COVID-19 , Controle de Doenças Transmissíveis , Genoma Viral , Humanos , Incidência , Filogeografia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Análise Espaço-Temporal , Viagem , Reino Unido/epidemiologia
10.
Parasit Vectors ; 14(1): 220, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892750

RESUMO

BACKGROUND: Soil-transmitted helminths (STHs) are a major cause of poor health in low- and middle-income countries. In particular, hookworm is known to cause anaemia in children and women of reproductive age (WRA). One goal of the World Health Organization's (WHO) 2030 roadmap for neglected tropical diseases is to reduce STH-related morbidity in WRA. As a minimal intervention, the WHO recommends deworming adolescent girls annually during human papilloma virus vaccination programmes and WRA during pregnancy and lactation. These routine interventions are low cost and can be implemented even by the most basic health services in endemic countries. In this study we use a cohort model to investigate the potential impact on STH-related morbidity in WRA. RESULTS: Annual deworming treatment of adolescent girls reduces the prevalence of moderate- and heavy-intensity infections in this age group by up to 60% in moderate transmission settings and by 12-27% in high transmission settings. Treatment of WRA during pregnancy and lactation on its own has a small (< 20%) but significant effect on morbidity although it does not lead to the achievement of the morbidity target (< 2% moderate- to high-intensity infections) in this age group. However, depending on the age-intensity profile of infection, which may vary geographically, and assumptions on the density-dependence of egg production by fertilised female worms, continued school-based treatment may be able to reduce the force of infection acting on WRA, both through an indirect effect on the overall population-based force of infection and via reducing the burden of infection as children age and move into the WRA age classes. As a result, morbidity in WRA may be eliminated. CONCLUSION: While deworming during pregnancy and lactation does not lead to the achievement of the morbidity target in WRA and its efficacy may vary by setting, it is still expected to be beneficial for maternity and child health. Monitoring of any WRA-based intervention is recommended to evaluate its effectiveness.


Assuntos
Helmintíase/tratamento farmacológico , Helmintíase/epidemiologia , Complicações Parasitárias na Gravidez/prevenção & controle , Solo/parasitologia , Adolescente , Adulto , Idoso , Anemia/etiologia , Anemia/prevenção & controle , Criança , Pré-Escolar , Estudos de Coortes , Simulação por Computador , Feminino , Saúde Global , Helmintíase/complicações , Helmintíase/transmissão , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Modelos Biológicos , Morbidade , Gravidez , Prevalência , Processos Estocásticos , Adulto Jovem
11.
Res Sq ; 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34981043

RESUMO

The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions. Through analysis of human movement, contact tracing, and virus genomic data, we find that the focus of geographic expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced >1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers from India reduced onward transmission from importations; however the transmission chains that later dominated the Delta wave in England had been already seeded before restrictions were introduced. In England, increasing inter-regional travel drove Delta's nationwide dissemination, with some cities receiving >2,000 observable lineage introductions from other regions. Subsequently, increased levels of local population mixing, not the number of importations, was associated with faster relative growth of Delta. Among US states, we find that regions that previously experienced large waves also had faster Delta growth rates, and a model including interactions between immunity and human behaviour could accurately predict the rise of Delta there. Delta’s invasion dynamics depended on fine scale spatial heterogeneity in immunity and contact patterns and our findings will inform optimal spatial interventions to reduce transmission of current and future VOCs such as Omicron.

12.
medRxiv ; 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34981069

RESUMO

The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases 1-3 . The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions 4,5 . Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions. Through analysis of human movement, contact tracing, and virus genomic data, we find that the focus of geographic expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced >1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers from India reduced onward transmission from importations; however the transmission chains that later dominated the Delta wave in England had been already seeded before restrictions were introduced. In England, increasing inter-regional travel drove Delta's nationwide dissemination, with some cities receiving >2,000 observable lineage introductions from other regions. Subsequently, increased levels of local population mixing, not the number of importations, was associated with faster relative growth of Delta. Among US states, we find that regions that previously experienced large waves also had faster Delta growth rates, and a model including interactions between immunity and human behaviour could accurately predict the rise of Delta there. Delta's invasion dynamics depended on fine scale spatial heterogeneity in immunity and contact patterns and our findings will inform optimal spatial interventions to reduce transmission of current and future VOCs such as Omicron.

13.
Trans R Soc Trop Med Hyg ; 115(3): 253-260, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33313897

RESUMO

BACKGROUND: On 1 April 2020, the WHO recommended an interruption of all activities for the control of neglected tropical diseases, including soil-transmitted helminths (STH), in response to the COVID-19 pandemic. This paper investigates the impact of this disruption on the progress towards the WHO 2030 target for STH. METHODS: We used two stochastic individual-based models to simulate the impact of missing one or more preventive chemotherapy (PC) rounds in different endemicity settings. We also investigated the extent to which this impact can be lessened by mitigation strategies, such as semiannual or community-wide PC. RESULTS: Both models show that without a mitigation strategy, control programmes will catch up by 2030, assuming that coverage is maintained. The catch-up time can be up to 4.5 y after the start of the interruption. Mitigation strategies may reduce this time by up to 2 y and increase the probability of achieving the 2030 target. CONCLUSIONS: Although a PC interruption will only temporarily impact the progress towards the WHO 2030 target, programmes are encouraged to restart as soon as possible to minimise the impact on morbidity. The implementation of suitable mitigation strategies can turn the interruption into an opportunity to accelerate progress towards reaching the target.


Assuntos
Anti-Helmínticos/uso terapêutico , COVID-19/epidemiologia , Helmintíase/prevenção & controle , Helmintíase/transmissão , Solo/parasitologia , Animais , Helmintíase/epidemiologia , Humanos , Modelos Teóricos , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/prevenção & controle , Pandemias , SARS-CoV-2 , Organização Mundial da Saúde
14.
Sci Rep ; 10(1): 14579, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883971

RESUMO

Alzheimer's disease patients typically present with multiple co-morbid neuropathologies at autopsy, but the impact of these pathologies on cognitive impairment during life is poorly understood. In this study, we developed cognitive trajectories for patients with common co-pathologies in the presence and absence of Alzheimer's disease neuropathology. Cognitive trajectories were modelled in a Bayesian hierarchical regression framework to estimate the effects of each neuropathology on cognitive decline as assessed by the mini-mental state examination and the clinical dementia rating scale sum of boxes scores. We show that both TDP-43 proteinopathy and cerebral amyloid angiopathy associate with cognitive impairment of similar magnitude to that associated with Alzheimer's disease neuropathology. Within our study population, 63% of individuals given the 'gold-standard' neuropathological diagnosis of Alzheimer's disease in fact possessed either TDP-43 proteinopathy or cerebral amyloid angiopathy of sufficient severity to independently explain the majority of their cognitive impairment. This suggests that many individuals diagnosed with Alzheimer's disease may actually suffer from a mixed dementia, and therapeutics targeting only Alzheimer's disease-related processes may have severely limited efficacy in these co-morbid populations.


Assuntos
Doença de Alzheimer/complicações , Angiopatia Amiloide Cerebral/patologia , Transtornos Cognitivos/patologia , Corpos de Lewy/patologia , Proteinopatias TDP-43/patologia , Idoso , Doença de Alzheimer/patologia , Estudos de Casos e Controles , Angiopatia Amiloide Cerebral/etiologia , Transtornos Cognitivos/etiologia , Feminino , Humanos , Masculino , Estudos Retrospectivos , Proteinopatias TDP-43/etiologia
15.
Alzheimers Res Ther ; 12(1): 74, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32534594

RESUMO

BACKGROUND: Quantifying changes in the levels of biological and cognitive markers prior to the clinical presentation of Alzheimer's disease (AD) will provide a template for understanding the underlying aetiology of the clinical syndrome and, concomitantly, for improving early diagnosis, clinical trial recruitment and treatment assessment. This study aims to characterise continuous changes of such markers and determine their rate of change and temporal order throughout the AD continuum. METHODS: The methodology is founded on the development of stochastic models to estimate the expected time to reach different clinical disease states, for different risk groups, and synchronise short-term individual biomarker data onto a disease progression timeline. Twenty-seven markers are considered, including a range of cognitive scores, cerebrospinal (CSF) and plasma fluid proteins, and brain structural and molecular imaging measures. Data from 2014 participants in the Alzheimer's Disease Neuroimaging Initiative database is utilised. RESULTS: The model suggests that detectable memory dysfunction could occur up to three decades prior to the onset of dementia due to AD (ADem). This is closely followed by changes in amyloid-ß CSF levels and the first cognitive decline, as assessed by sensitive measures. Hippocampal atrophy could be observed as early as the initial amyloid-ß accumulation. Brain hypometabolism starts later, about 14 years before onset, along with changes in the levels of total and phosphorylated tau proteins. Loss of functional abilities occurs rapidly around ADem onset. Neurofilament light is the only protein with notable early changes in plasma levels. The rate of change varies, with CSF, memory, amyloid PET and brain structural measures exhibiting the highest rate before the onset of ADem, followed by a decline. The probability of progressing to a more severe clinical state increases almost exponentially with age. In accordance with previous studies, the presence of apolipoprotein E4 alleles and amyloid-ß accumulation can be associated with an increased risk of developing the disease, but their influence depends on age and clinical state. CONCLUSIONS: Despite the limited longitudinal data at the individual level and the high variability observed in such data, the study elucidates the link between the long asynchronous pathophysiological processes and the preclinical and clinical stages of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Neuroimagem , Proteínas tau
16.
Alzheimers Dement ; 15(10): 1348-1356, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31564609

RESUMO

The 2018 National Institute on Aging and the Alzheimer's Association (NIA-AA) research framework recently redefined Alzheimer's disease (AD) as a biological construct, based on in vivo biomarkers reflecting key neuropathologic features. Combinations of normal/abnormal levels of three biomarker categories, based on single thresholds, form the AD signature profile that defines the biological disease state as a continuum, independent of clinical symptomatology. While single thresholds may be useful in defining the biological signature profile, we provide evidence that their use in studies with cognitive outcomes merits further consideration. Using data from the Alzheimer's Disease Neuroimaging Initiative with a focus on cortical amyloid binding, we discuss the limitations of applying the biological definition of disease status as a tool to define the increased likelihood of the onset of the Alzheimer's clinical syndrome and the effects that this may have on trial study design. We also suggest potential research objectives going forward and what the related data requirements would be.


Assuntos
Doença de Alzheimer/classificação , Biomarcadores , Encéfalo , Neuropatologia , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , National Institute on Aging (U.S.)/normas , Neuroimagem , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...