Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 109(40): 16101-6, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988081

RESUMO

Antibody-drug conjugates (ADCs) allow selective targeting of cytotoxic drugs to cancer cells presenting tumor-associated surface markers, thereby minimizing systemic toxicity. Traditionally, the drug is conjugated nonselectively to cysteine or lysine residues in the antibody. However, these strategies often lead to heterogeneous products, which make optimization of the biological, physical, and pharmacological properties of an ADC challenging. Here we demonstrate the use of genetically encoded unnatural amino acids with orthogonal chemical reactivity to synthesize homogeneous ADCs with precise control of conjugation site and stoichiometry. p-Acetylphenylalanine was site-specifically incorporated into an anti-Her2 antibody Fab fragment and full-length IgG in Escherichia coli and mammalian cells, respectively. The mutant protein was selectively and efficiently conjugated to an auristatin derivative through a stable oxime linkage. The resulting conjugates demonstrated excellent pharmacokinetics, potent in vitro cytotoxic activity against Her2(+) cancer cells, and complete tumor regression in rodent xenograft treatment models. The synthesis and characterization of homogeneous ADCs with medicinal chemistry-like control over macromolecular structure should facilitate the optimization of ADCs for a host of therapeutic uses.


Assuntos
Aminoácidos/química , Anticorpos Monoclonais Humanizados/química , Neoplasias da Mama/tratamento farmacológico , Imunoconjugados/química , Engenharia de Proteínas/métodos , Aminobenzoatos/química , Animais , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Feminino , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Imunoglobulina G/química , Camundongos , Camundongos SCID , Oligopeptídeos/química , Receptor ErbB-2/química , Receptor ErbB-2/imunologia , Trastuzumab
3.
ACS Macro Lett ; 1(1): 19-22, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578473

RESUMO

(-)-Sparteine is a proven organocatalyst for the ring-opening polymerization (ROP) of l-lactide, which affords polymers of controlled molecular weight and narrow polydispersity. The recent worldwide shortage of (-)-sparteine has necessitated the identification of simple and cost-effective replacement ROP catalysts. A series of commercially available molecules was first identified through molecular modeling and then subsequently investigated for polymerizing l-lactide. The modeling proved very useful at predicting spatial relationships and nitrogen geometries that greatly aided in the rapid identification of various alkyl amines as alternative organocatalysts.

4.
Bioconjug Chem ; 22(8): 1535-44, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21774545

RESUMO

Integrins αvß3 and αvß6 are highly expressed on tumor cells and/or by the tumor vasculature of many human cancers, and represent promising targets for anticancer therapy. Novel chemically programmed antibodies (cpAbs) targeting these integrins were prepared using the catalytic aldolase Antibody (Ab) programming strategy. The effects of the cpAbs on cellular functions related to tumor progression were examined in vitro using tumor cell lines and their cognate integrin ligands, fibronectin and osteopontin. The inhibitory functions of the conjugates and their specificity were examined based on interference with cell-cell and cell-ligand interactions related to tumor progression. Cell binding analyses of the anti-integrin cpAbs revealed high affinity for tumor cells that overexpressed αvß3 and αvß6 integrins, and weak interactions with αvß1 and αvß8 integrins, in vitro. Functional analyses demonstrated that the cpAbs strongly inhibited cell-cell interactions through osteopontin binding, and they had little or no immediate effects on cell viability and proliferation. On the basis of these characteristics, the cpAbs are likely to have a broad range of activities in vivo, as they can target and antagonize one or multiple αv integrins expressed on tumors and tumor vasculatures. Presumably, these conjugates may inhibit the establishment of metastastatic tumors in distant organs through interfering with cell adhesion more effectively than antibodies or compounds targeting one integrin only. These anti-integrin cpAbs may also provide useful reagents to study combined effect of multiple αv integrins on cellular functions in vitro, on pathologies, including tumor angiogenesis, fibrosis, and epithelial cancers, in vivo.


Assuntos
Anticorpos/uso terapêutico , Antígenos de Neoplasias/imunologia , Antineoplásicos , Integrina alfaV/imunologia , Neoplasias/imunologia , Anticorpos/imunologia , Comunicação Celular , Linhagem Celular Tumoral , Frutose-Bifosfato Aldolase , Humanos , Imunoconjugados/uso terapêutico , Integrina alfaVbeta3/imunologia , Integrinas/imunologia , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...