Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37997988

RESUMO

Telomeres are repeated sequences of nucleotides at the end of chromosomes. They deteriorate across mitotic divisions of a cell. In Homo sapiens this process of lifetime reduction has been shown to correspond with aspects of organismal aging and exposure to stress or other insults. The early impetus to characterize telomere dynamics in livestock related to the concern that aged donor DNA would result in earlier cell senescence and overall aging in cloned animals. Telomere length investigations in dairy cows included breed effects, estimates of additive genetic control (heritability 0.12 to 0.46), and effects of external stressors on telomere degradation across animal life. Evaluation of telomeres with respect to aging has also been conducted in pigs and horses, and there are fewer reports of telomere biology in beef cattle, sheep, and goats. There were minimal associations of telomere length with animal productivity measures. Most, but not all, work in livestock has documented an inverse relationship between peripheral blood cell telomere length and age; that is, a longer telomere length was associated with younger age. Because livestock longevity affects productivity and profitability, the role of tissue-specific telomere attrition in aging may present alternative improvement strategies for genetic improvement while also providing translational biomedical knowledge.

2.
Genes (Basel) ; 14(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003025

RESUMO

Knowledge of circadian rhythm clock gene expression outside the suprachiasmatic nucleus is increasing. The purpose of this study was to determine whether expression of circadian clock genes differed within or among the bovine stress axis tissues (e.g., amygdala, hypothalamus, pituitary, adrenal cortex, and adrenal medulla). Tissues were obtained at an abattoir from eight mature nonpregnant Brahman cows that had been maintained in the same pasture and nutritional conditions. Sample tissues were stored in RNase-free sterile cryovials at -80 °C until the total RNA was extracted, quantified, assessed, and sequenced (NovaSeq 6000 system; paired-end 150 bp cycles). The trimmed reads were then mapped to a Bos taurus (B. taurus) reference genome (Umd3.1). Further analysis used the edgeR package. Raw gene count tables were read into RStudio, and low-expression genes were filtered out using the criteria of three minimum reads per gene in at least five samples. Normalization factors were then calculated using the trimmed mean of M values method to produce normalized gene counts within each sample tissue. The normalized gene counts important for a circadian rhythm were analyzed within and between each tissue of the stress axis using the GLM and CORR procedures of the Statistical Analysis System (SAS). The relative expression profiles of circadian clock genes differed (p < 0.01) within each tissue, with neuronal PAS domain protein 2 (NPAS2) having greater expression in the amygdala (p < 0.01) and period circadian regulator (PER1) having greater expression in all other tissues (p < 0.01). The expression among tissues also differed (p < 0.01) for individual circadian clock genes, with circadian locomotor output cycles protein kaput (CLOCK) expression being greater within the adrenal tissues and nuclear receptor subfamily 1 group D member 1 (NR1D1) expression being greater within the other tissues (p < 0.01). Overall, the results indicate that within each tissue, the various circadian clock genes were differentially expressed, in addition to being differentially expressed among the stress tissues of mature Brahman cows. Future use of these findings may assist in improving livestock husbandry and welfare by understanding interactions of the environment, stress responsiveness, and peripheral circadian rhythms.


Assuntos
Relógios Circadianos , Feminino , Bovinos/genética , Animais , Relógios Circadianos/genética , Proteínas Circadianas Period , Ritmo Circadiano/genética , Hipotálamo , Glândulas Suprarrenais
3.
Biology (Basel) ; 12(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36829529

RESUMO

Quantifying the natural inter-individual variation in DNA methylation patterns is important for identifying its contribution to phenotypic variation, but also for understanding how the environment affects variability, and for incorporation into statistical analyses. The inter-individual variation in DNA methylation patterns in female cattle and the effect that a prenatal stressor has on such variability have yet to be quantified. Thus, the objective of this study was to utilize methylation data from mature Brahman females to quantify the inter-individual variation in DNA methylation. Pregnant Brahman cows were transported for 2 h durations at days 60 ± 5; 80 ± 5; 100 ± 5; 120 ± 5; and 140 ± 5 of gestation. A non-transport group was maintained as a control. Leukocytes, amygdala, and anterior pituitary glands were harvested from eight cows born from the non-transport group (Control) and six from the transport group (PNS) at 5 years of age. The DNA harvested from the anterior pituitary contained the greatest variability in DNA methylation of cytosine-phosphate-guanine (mCpG) sites from both the PNS and Control groups, and the amygdala had the least. Numerous variable mCpG sites were associated with retrotransposable elements and highly repetitive regions of the genome. Some of the genomic features that had high variation in DNA methylation are involved in immune responses, signaling, responses to stimuli, and metabolic processes. The small overlap of highly variable CpG sites and features between tissues and leukocytes supports the role of variable DNA methylation in regulating tissue-specific gene expression. Many of the CpG sites that exhibited high variability in DNA methylation were common between the PNS and Control groups within a tissue, but there was little overlap in genomic features with high variability. The interaction between the prenatal environment and the genome could be responsible for the differences in location of the variable DNA methylation.

4.
Front Genet ; 13: 949309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991551

RESUMO

Prenatal stress can alter postnatal performance and temperament of cattle. These phenotypic effects may result from changes in gene expression caused by stress-induced epigenetic alterations. Specifically, shifts in gene expression caused by DNA methylation within the brain's amygdala can result in altered behavior because it regulates fear, stress response and aggression in mammals Thus, the objective of this experiment was to identify DNA methylation and gene expression differences in the amygdala tissue of 5-year-old prenatally stressed (PNS) Brahman cows compared to control cows. Pregnant Brahman cows (n = 48) were transported for 2-h periods at 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 days of gestation. A non-transported group (n = 48) were controls (Control). Amygdala tissue was harvested from 6 PNS and 8 Control cows at 5 years of age. Overall methylation of gene body regions, promoter regions, and cytosine-phosphate-guanine (CpG) islands were compared between the two groups. In total, 202 genes, 134 promoter regions, and 133 CpG islands exhibited differential methylation (FDR ≤ 0.15). Following comparison of gene expression in the amygdala between the PNS and Control cows, 2 differentially expressed genes were identified (FDR ≤ 0.15). The minimal differences observed could be the result of natural changes of DNA methylation and gene expression as an animal ages, or because this degree of transportation stress was not severe enough to cause lasting effects on the offspring. A younger age may be a more appropriate time to assess methylation and gene expression differences produced by prenatal stress.

5.
Epigenetics ; 16(5): 519-536, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32815760

RESUMO

Possible phenotypic impairments associated with maternal stress during gestation in beef cattle may be explained by epigenetic effects. This study examined the impact of prenatal transportation stress on DNA methylation of lymphocytes of Brahman cows over the first 5 years of life. Methylation analysis through reduced representation bisulphite sequencing was conducted on DNA from lymphocytes from 28 paired samples from 6 prenatally stressed (PNS) and 8 control (Control) females obtained initially when they were 28 days of age and 5 years of age. There were 14,386 CpG (C = cytosine; p = phosphate; G = guanine) sites differentially methylated (P < 0.01) in 5-yr-old Control cows compared to their lymphocyte DNA at 28 days of age, this number was slightly decreased in 5-yr-old PNS with 13,378 CpG sites. Only 2,749 age-related differentially methylated CpG sites were seen within PNS females. There were 2,637 CpG sites differentially methylated (P < 0.01) in PNS cows relative to Controls at 5 years of age. There were differentially methylated genes in 5-yr-old cows that contributed similarly to altered gene pathways in both treatment groups. Canonical pathways altered in PNS compared to Control cows at 5 years of age were mostly related to development and growth, nervous system development and function, and immune response. Prenatal stress appeared to alter the epigenome in Brahman cows compared to Control at 5 years of age, which implies a persistent intervention in DNA methylation in lymphocytes, and may confer long-lasting effects on gene expression, and consequently relevant phenotypic changes.


Assuntos
Metilação de DNA , Epigenômica , Animais , Bovinos , Ilhas de CpG , DNA , Feminino , Genoma , Gravidez , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA