Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 136(10): 1621-31, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19395640

RESUMO

Cilia defects have been implicated in a variety of human diseases and genetic disorders, but how cilia motility contributes to these phenotypes is still unknown. To further our understanding of how cilia function in development, we have cloned and characterized two alleles of seahorse, a zebrafish mutation that results in pronephric cysts. seahorse encodes Lrrc6l, a leucine-rich repeat-containing protein that is highly conserved in organisms that have motile cilia. seahorse is expressed in zebrafish tissues known to contain motile cilia. Although mutants do not affect cilia structure and retain the ability to interact with Disheveled, both alleles of seahorse strongly affect cilia motility in the zebrafish pronephros and neural tube. Intriguingly, although seahorse mutations variably affect fluid flow in Kupffer's vesicle, they can have very weak effects on left-right patterning. Combined with recently published results, our alleles suggest that the function of seahorse in cilia motility is separable from its function in other cilia-related phenotypes.


Assuntos
Tubo Neural/embriologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Padronização Corporal/fisiologia , Cílios/fisiologia , Dados de Sequência Molecular , Mutação , Tubo Neural/fisiologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
2.
Proc Natl Acad Sci U S A ; 105(37): 13924-9, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18784369

RESUMO

The Nodal signaling pathway plays a conserved role in determining left-sided identity in vertebrates with this early left-right (L/R) patterning influencing the asymmetric development and placement of visceral organs. We have studied the role of Nodal signaling in asymmetric cardiac morphogenesis in zebrafish and describe two distinct rotations occurring within the heart. The first is driven by an asymmetric migration of myocardial cells during cardiac jogging, resulting in the conversion of the L/R axis to the dorsal-ventral (D/V) axis of the linear heart. This first rotation is directly influenced by the laterality of asymmetric gene expression. The second rotation occurs before cardiac looping and positions the original left cells exposed to Nodal signaling back to the left of the wild-type (WT) heart by 48 hours postfertilization (hpf). The direction of this second rotation is determined by the laterality of cardiac jogging and is not directly influenced by asymmetric gene expression. Finally, we have identified a role for Nodal signaling in biasing the location of the inner ventricular and outer atrial curvature formations. These results suggest that Nodal signaling directs asymmetric cardiac morphogenesis through establishing and subsequently reinforcing laterality information over the course of cardiac development.


Assuntos
Padronização Corporal , Coração/embriologia , Miocárdio/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Movimento Celular , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Determinação Direita-Esquerda , Miocárdio/citologia , Proteína Nodal , Fator de Crescimento Transformador beta/genética , Peixe-Zebra/genética
3.
J Am Soc Nephrol ; 19(5): 891-903, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18305125

RESUMO

Renal hypodysplasia (RHD) is characterized by reduced kidney size and/or maldevelopment of the renal tissue following abnormal organogenesis. Mutations in renal developmental genes have been identified in a subset of affected individuals. Here, we report the first mutations in BMP4 and SIX2 identified in patients with RHD. We detected 3 BMP4 mutations in 5 RHD patients, and 3 SIX2 mutations in 5 different RHD patients. Overexpression assays in zebrafish demonstrated that these mutations affect the function of Bmp4 and Six2 in vivo. Overexpression of zebrafish six2.1 and bmp4 resulted in dorsalization and ventralization, respectively, suggesting opposing roles in mesendoderm formation. When mutant constructs containing the identified human mutations were overexpressed instead, these effects were attenuated. Morpholino knockdown of bmp4 and six2.1 affected glomerulogenesis, suggesting specific roles for these genes in the formation of the pronephros. In summary, these studies implicate conserved roles for Six2 and Bmp4 in the development of the renal system. Defects in these proteins could affect kidney development at multiple stages, leading to the congenital anomalies observed in patients with RHD.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Proteínas de Homeodomínio/genética , Rim/anormalidades , Rim/fisiologia , Proteínas do Tecido Nervoso/genética , Insuficiência Renal/genética , Insuficiência Renal/patologia , Sequência de Aminoácidos , Animais , Proteína Morfogenética Óssea 4 , Análise Mutacional de DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Dados de Sequência Molecular , Néfrons/anormalidades , Néfrons/fisiologia , Fator de Transcrição PAX2/genética , Fenótipo , Insuficiência Renal/fisiopatologia , Proteínas WT1/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA