Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Mol Biosci ; 11: 1334876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645275

RESUMO

Heat shock protein 90 (Hsp90) is a molecular chaperone important for maintaining protein homeostasis (proteostasis) in the cell. Hsp90 inhibitors are being explored as cancer therapeutics because of their ability to disrupt proteostasis. Inhibiting Hsp90 increases surface density of the immunological receptor Major Histocompatibility Complex 1 (MHC1). Here we show that this increase occurs across multiple cancer cell lines and with both cytosol-specific and pan-Hsp90 inhibitors. We demonstrate that Hsp90 inhibition also alters surface expression of both IFNGR and PD-L1, two additional immunological receptors that play a significant role in anti-tumour or anti-immune activity in the tumour microenvironment. Hsp90 also negatively regulates IFN-γ activity in cancer cells, suggesting it has a unique role in mediating the immune system's response to cancer. Our data suggests a strong link between Hsp90 activity and the pathways that govern anti-tumour immunity. This highlights the potential for the use of an Hsp90 inhibitor in combination with another currently available cancer treatment, immune checkpoint blockade therapy, which works to prevent immune evasion of cancer cells. Combination checkpoint inhibitor therapy and the use of an Hsp90 inhibitor may potentiate the therapeutic benefits of both treatments and improve prognosis for cancer patients.

2.
Gastro Hep Adv ; 2(8): 1103-1119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098742

RESUMO

Cancer immunotherapy has become an indispensable mode of treatment for a multitude of solid tumor cancers. Colorectal cancer (CRC) has been one of the many cancer types to benefit from immunotherapy, especially in advanced disease where standard treatment fails to prevent recurrence or results in poor survival. The efficacy of immunotherapy in CRC has not been without challenge, as early clinical trials observed dismal responses in unselected CRC patients treated with checkpoint inhibitors. Many studies and clinical trials have since refined immunotherapies available for CRC, solidifying immunotherapy as a powerful asset for CRC treatment. This review article examines CRC immunotherapies, from their foundation, through emerging avenues for improvement, to future directions.

3.
J Immunol ; 211(3): 497-507, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294291

RESUMO

Cachexia is a major cause of death in cancer and leads to wasting of cardiac and skeletal muscle, as well as adipose tissue. Various cellular and soluble mediators have been postulated in driving cachexia; however, the specific mechanisms behind this muscle wasting remain poorly understood. In this study, we found polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) to be critical for the development of cancer-associated cachexia. Significant expansion of PMN-MDSCs was observed in the cardiac and skeletal muscles of cachectic murine models. Importantly, the depletion of this cell subset, using depleting anti-Ly6G Abs, attenuated this cachectic phenotype. To elucidate the mechanistic involvement of PMN-MDSCs in cachexia, we examined major mediators, that is, IL-6, TNF-α, and arginase 1. By employing a PMN-MDSC-specific Cre-recombinase mouse model, we showed that PMN-MDSCs were not maintained by IL-6 signaling. In addition, PMN-MDSC-mediated cardiac and skeletal muscle loss was not abrogated by deficiency in TNF-α or arginase 1. Alternatively, we found PMN-MDSCs to be critical producers of activin A in cachexia, which was noticeably elevated in cachectic murine serum. Moreover, inhibition of the activin A signaling pathway completely protected against cardiac and skeletal muscle loss. Collectively, we demonstrate that PMN-MDSCs are active producers of activin A, which in turn induces cachectic muscle loss. Targeting this immune/hormonal axis will allow the development of novel therapeutic interventions for patients afflicted with this debilitating syndrome.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Arginase/metabolismo , Caquexia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Miocárdio , Músculo Esquelético/metabolismo
4.
Front Immunol ; 14: 1190810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304266

RESUMO

Introduction: Colorectal cancer (CRC) is a leading cause of death worldwide and its growth can either be promoted or inhibited by the metabolic activities of intestinal microbiota. Short chain fatty acids (SCFAs) are microbial metabolites with potent immunoregulatory properties yet there is a poor understanding of how they directly regulate immune modulating pathways within the CRC cells. Methods: We used engineered CRC cell lines, primary organoid cultures, orthotopic in vivo models, and patient CRC samples to investigate how SCFA treatment of CRC cells regulates their ability to activate CD8+ T cells. Results: CRC cells treated with SCFAs induced much greater activation of CD8+ T cells than untreated CRC cells. CRCs exhibiting microsatellite instability (MSI) due to inactivation of DNA mismatch repair were much more sensitive to SCFAs and induced much greater CD8+ T cell activation than chromosomally instable (CIN) CRCs with intact DNA repair, indicating a subtype-dependent response to SCFAs. This was due to SCFA-induced DNA damage that triggered upregulation of chemokine, MHCI, and antigen processing or presenting genes. This response was further potentiated by a positive feedback loop between the stimulated CRC cells and activated CD8+ T cells in the tumor microenvironment. The initiating mechanism in the CRCs was inhibition of histone deacetylation by the SCFAs that triggered genetic instability and led to an overall upregulation of genes associated with SCFA signaling and chromatin regulation. Similar gene expression patterns were found in human MSI CRC samples and in orthotopically grown MSI CRCs independent of the amount of SCFA producing bacteria in the intestine. Discussion: MSI CRCs are widely known to be more immunogenic than CIN CRCs and have a much better prognosis. Our findings indicate that a greater sensitivity to microbially produced SCFAs contributes to the successful activation of CD8+ T cells by MSI CRCs, thereby identifying a mechanism that could be therapeutically targeted to improve antitumor immunity in CIN CRCs.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Cromatina , Ácidos Graxos Voláteis , Organoides , Neoplasias Colorretais/genética , Microambiente Tumoral
5.
STAR Protoc ; 3(1): 101165, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35535161

RESUMO

DNA damage caused by genetic instability or extrinsic treatment can induce DNA leakage from the nucleus or mitochondria into the cytosol and activate innate and adaptive immunity. To enable characterization of these endogenous cytosolic DNAs and the mechanisms that produce them, we developed an approach for isolation of cytosolic DNA with no detectable mitochondrial contamination. Here we describe cytosolic compartment separation followed by DNA purification from colorectal cancer cells and illustrate how this may be expanded to other cell types.


Assuntos
DNA , Mitocôndrias , Linhagem Celular , Células Cultivadas , Citosol/metabolismo , DNA/genética , Mitocôndrias/genética
6.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34297038

RESUMO

Colorectal cancers (CRCs) deficient in DNA mismatch repair (dMMR) contain abundant CD8+ tumor-infiltrating lymphocytes (TILs) responding to the abundant neoantigens from their unstable genomes. Priming of such tumor-targeted TILs first requires recruitment of CD8+ T cells into the tumors, implying that this is an essential prerequisite of successful dMMR anti-tumor immunity. We have discovered that selective recruitment and activation of systemic CD8+ T cells into dMMR CRCs strictly depend on overexpression of CCL5 and CXCL10 due to endogenous activation of cGAS/STING and type I IFN signaling by damaged DNA. TIL infiltration into orthotopic dMMR CRCs is neoantigen-independent and followed by induction of a resident memory-like phenotype key to the anti-tumor response. CCL5 and CXCL10 could be up-regulated by common chemotherapies in all CRCs, indicating that facilitating CD8+ T cell recruitment underlies their efficacy. Induction of CCL5 and CXCL10 thus represents a tractable therapeutic strategy to induce TIL recruitment into CRCs, where local priming can be maximized even in neoantigen-poor CRCs.


Assuntos
Quimiocina CCL5/imunologia , Quimiocina CXCL10/imunologia , Neoplasias do Colo/imunologia , Reparo de Erro de Pareamento de DNA/imunologia , Interferon Tipo I/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Testes Imunológicos de Citotoxicidade , Feminino , Instabilidade Genômica , Humanos , Interferon Tipo I/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteína 1 Homóloga a MutL/genética
7.
J Exp Med ; 217(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32658257

RESUMO

IgG immune complexes (ICs) promote autoimmunity through binding fragment crystallizable (Fc) γ-receptors (FcγRs). Of these, the highly prevalent FcγRIIa (CD32a) histidine (H)-131 variant (CD32aH) is strongly linked to human autoimmune diseases through unclear mechanisms. We show that, relative to the CD32a arginine (R)-131 (CD32aR) variant, CD32aH more avidly bound human (h) IgG1 IC and formed a ternary complex with the neonatal Fc receptor (FcRn) under acidic conditions. In primary human and mouse cells, both CD32a variants required FcRn to induce innate and adaptive immune responses to hIgG1 ICs, which were augmented in the setting of CD32aH. Conversely, FcRn induced responses to IgG IC independently of classical FcγR, but optimal responses required FcRn and FcγR. Finally, FcRn blockade decreased inflammation in a rheumatoid arthritis model without reducing circulating autoantibody levels, providing support for FcRn's direct role in IgG IC-associated inflammation. Thus, CD32a and FcRn coregulate IgG IC-mediated immunity in a manner favoring the CD32aH variant, providing a novel mechanism for its disease association.


Assuntos
Autoimunidade/imunologia , Antígenos de Histocompatibilidade Classe I/fisiologia , Imunoglobulina G/imunologia , Receptores Fc/fisiologia , Imunidade Adaptativa/imunologia , Animais , Artrite Reumatoide/imunologia , Suscetibilidade a Doenças , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Fc/imunologia , Receptores de IgG/imunologia
8.
Microbiome ; 8(1): 93, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32534596

RESUMO

BACKGROUND: The vertebrate clade diverged into Chondrichthyes (sharks, rays, and chimeras) and Osteichthyes fishes (bony fishes) approximately 420 mya, with each group accumulating vast anatomical and physiological differences, including skin properties. The skin of Chondrichthyes fishes is covered in dermal denticles, whereas Osteichthyes fishes are covered in scales and are mucous rich. The divergence time among these two fish groups is hypothesized to result in predictable variation among symbionts. Here, using shotgun metagenomics, we test if patterns of diversity in the skin surface microbiome across the two fish clades match predictions made by phylosymbiosis theory. We hypothesize (1) the skin microbiome will be host and clade-specific, (2) evolutionary difference in elasmobranch and teleost will correspond with a concomitant increase in host-microbiome dissimilarity, and (3) the skin structure of the two groups will affect the taxonomic and functional composition of the microbiomes. RESULTS: We show that the taxonomic and functional composition of the microbiomes is host-specific. Teleost fish had lower average microbiome within clade similarity compared to among clade comparison, but their composition is not different among clade in a null based model. Elasmobranch's average similarity within clade was not different than across clade and not different in a null based model of comparison. In the comparison of host distance with microbiome distance, we found that the taxonomic composition of the microbiome was related to host distance for the elasmobranchs, but not the teleost fishes. In comparison, the gene function composition was not related to the host-organism distance for elasmobranchs but was negatively correlated with host distance for teleost fishes. CONCLUSION: Our results show the patterns of phylosymbiosis are not consistent across both fish clades, with the elasmobranchs showing phylosymbiosis, while the teleost fish are not. The discrepancy may be linked to alternative processes underpinning microbiome assemblage, including possible historical host-microbiome evolution of the elasmobranchs and convergent evolution in the teleost which filter specific microbial groups. Our comparison of the microbiomes among fishes represents an investigation into the microbial relationships of the oldest divergence of extant vertebrate hosts and reveals that microbial relationships are not consistent across evolutionary timescales. Video abstract.


Assuntos
Elasmobrânquios/microbiologia , Peixes/microbiologia , Tegumento Comum/microbiologia , Metagenômica , Microbiota/genética , Filogenia , Simbiose , Animais , Bactérias/genética , Bactérias/isolamento & purificação
9.
Nat Immunol ; 20(12): 1644-1655, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636468

RESUMO

Invariant natural killer T (iNKT) cells recognize activating self and microbial lipids presented by CD1d. CD1d can also bind non-activating lipids, such as sphingomyelin. We hypothesized that these serve as endogenous regulators and investigated humans and mice deficient in acid sphingomyelinase (ASM), an enzyme that degrades sphingomyelin. We show that ASM absence in mice leads to diminished CD1d-restricted antigen presentation and iNKT cell selection in the thymus, resulting in decreased iNKT cell levels and resistance to iNKT cell-mediated inflammatory conditions. Defective antigen presentation and decreased iNKT cells are also observed in ASM-deficient humans with Niemann-Pick disease, and ASM activity in healthy humans correlates with iNKT cell phenotype. Pharmacological ASM administration facilitates antigen presentation and restores the levels of iNKT cells in ASM-deficient mice. Together, these results demonstrate that control of non-agonistic CD1d-associated lipids is critical for iNKT cell development and function in vivo and represents a tight link between cellular sphingolipid metabolism and immunity.


Assuntos
Inflamação/imunologia , Células T Matadoras Naturais/imunologia , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/imunologia , Timo/imunologia , Animais , Apresentação de Antígeno , Antígenos CD1d/metabolismo , Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Terapia de Reposição de Enzimas , Humanos , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo
10.
BMJ Open ; 9(9): e030502, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530611

RESUMO

INTRODUCTION: Neoadjuvant chemotherapy for breast cancer treatment is prescribed to facilitate surgery and provide confirmation of drug-sensitive disease, and the achievement of pathological complete response (pCR) predicts improved long-term outcomes. Docosahexaenoic acid (DHA) has been shown to reduce tumour growth in preclinical models when combined with chemotherapy and is known to beneficially modulate systemic immune function. The purpose of this trial is to investigate the benefit of DHA supplementation in combination with neoadjuvant chemotherapy in patients with breast cancer. METHODS AND ANALYSIS: This is a double-blind, phase II, randomised controlled trial of 52 women prescribed neoadjuvant chemotherapy to test if DHA supplementation enhances chemotherapy efficacy. The DHA supplementation group will take 4.4 g/day DHA orally, and the placebo group will take an equal fat supplement of vegetable oil. The primary outcome will be change in Ki67 labelling index from prechemotherapy core needle biopsy to definitive surgical specimen. The secondary endpoints include assessment of (1) DHA plasma phospholipid content; (2) systemic immune cell types, plasma cytokines and inflammatory markers; (3) tumour markers for apoptosis and tumour infiltrating lymphocytes; (4) rate of pCR in breast and in axillary nodes; (5) frequency of grade 3 and 4 chemotherapy-associated toxicities; and (6) patient-perceived quality of life. The trial has 81% power to detect a significant between-group difference in Ki67 index with a two-sided t-test of less than 0.0497, and accounts for 10% dropout rate. ETHICS AND DISSEMINATION: This study has full approval from the Health Research Ethics Board of Alberta - Cancer Committee (Protocol #: HREBA.CC-18-0381). We expect to present the findings of this study to the scientific community in peer-reviewed journals and at conferences. The results of this study will provide evidence for supplementing with DHA during neoadjuvant chemotherapy treatment for breast cancer. TRIAL REGISTRATION NUMBER: NCT03831178.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Terapia Neoadjuvante/métodos , Alberta , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores Tumorais/análise , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Ensaios Clínicos Fase II como Assunto , Citocinas/sangue , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/sangue , Método Duplo-Cego , Feminino , Humanos , Antígeno Ki-67/metabolismo , Linfonodos/patologia , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
11.
Ann Dyslexia ; 69(1): 34-53, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30617942

RESUMO

In the USA, many states have adopted response to intervention or multi-tiered systems of supports to provide early intervention. However, there is considerable variability in how states and schools implement RTI. Teachers are responsible for using student data from RTI to inform instructional decisions for students with or at risk for dyslexia, so it is necessary to understand the knowledge they have about the structure of RTI in their individual schools. This study reviews the results of an exploratory factor analysis of a survey aimed at measuring teachers' knowledge about RTI implementation and their understanding of RTI implementation within their school. The 52-item survey was administered online to 139 general and special education teachers. The three final factors from this factor analytic work were (1) Teacher Knowledge about Tier 1 Implementation, (2) Teacher Knowledge about Leadership and School Systems, and (3) Teacher Knowledge about Data-Based Decision Making. Factor determinacy scores demonstrated that the survey had high internal consistency. On average, teachers' survey scores were higher on the first two factors and slightly lower on the third factor. Implications of the findings for teachers of students with learning disabilities, including dyslexia, and directions for future research were discussed.


Assuntos
Dislexia/terapia , Intervenção Educacional Precoce/normas , Professores Escolares/normas , Estudantes , Capacitação de Professores/normas , Adolescente , Criança , Dislexia/psicologia , Intervenção Educacional Precoce/métodos , Análise Fatorial , Feminino , Humanos , Masculino , Professores Escolares/psicologia , Instituições Acadêmicas/normas , Estudantes/psicologia , Inquéritos e Questionários , Capacitação de Professores/métodos
12.
Lang Speech Hear Serv Sch ; 49(4): 829-842, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30458544

RESUMO

Purpose: The purpose of this narrative review of the literature is to provide a description of intensive interventions for elementary grade students with dyslexia, students with learning disabilities, and students with intensive reading and writing needs. Method: First, we provide a brief overview of response to intervention. Second, we explain our theoretical framework for the review. Third, we describe evidence-based interventions, which are divided into predominantly reading or writing interventions. Fourth, we explain data-based individualization for these programs based on a taxonomy of intensity, and we provide an illustrative case study. Conclusion: We conclude by describing a set of links to websites and technical assistance resources that may be helpful for speech-language pathologists, teachers, and other interventionists to stay current with this research base and to lead professional learning communities.


Assuntos
Terapia da Linguagem/métodos , Deficiências da Aprendizagem/reabilitação , Criança , Dislexia/reabilitação , Humanos , Leitura , Redação
13.
Cancers (Basel) ; 10(5)2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29883385

RESUMO

Inflammation is a primary driver of cancer initiation and progression. However, the complex and dynamic nature of an inflammatory response make this a very difficult process to study. Organoids are a new model system where complex multicellular structures of primary cells can be grown in a 3D matrix to recapitulate the biology of the parent tissue. This experimental model offers several distinct advantages over alternatives including the ability to be genetically engineered, implanted in vivo and reliably derived from a wide variety of normal and cancerous tissue from patients. Furthermore, long-term organoid cultures reproduce many features of their source tissue, including genetic and epigenetic alterations and drug sensitivity. Perhaps most significantly, cancer organoids can be cocultured in a variety of different systems with a patients’ own immune cells, uniquely permitting the study of autologous cancer-immune cell interactions. Experiments with such systems promise to shed light on the mechanisms governing inflammation-associated cancer while also providing prognostic information on an individual patient’s responsiveness to immunotherapeutic anti-cancer drugs. Thanks to their ability to capture important features of the complex relationship between a cancer and its microenvironment, organoids are poised to become an essential tool for unraveling the mechanisms by which inflammation promotes cancer.

14.
Am J Reprod Immunol ; 80(3): e12972, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29745444

RESUMO

PROBLEM: IgG is the only antibody class, that is, actively transferred from the mother to the fetus across the placenta by an active, neonatal Fc receptor (FcRn) mediated process during pregnancy, conferring passive immunity and protection against infections to the newborn during the first months of life. Preterm infants may not receive sufficient titers of protective antibodies, as most of them are transferred only after the 34th week of gestation. Because of the great importance of this process, we investigated in a clinical setting the placental transmission of IgG antibodies in term and preterm newborns. METHOD OF STUDY: This work was conducted in 85 woman and their newborns, divided into four groups according to their clinical gestational age (≤37 weeks were considered as preterm). Blood samples were collected from the mothers and their newborns' umbilical cords to analyze total serum IgG concentrations, and a subgroup of 32 placentas was analyzed by immunohistochemistry to quantify the expression of the FcRn receptor. RESULTS: Total IgG levels in both mothers and neonates increased significantly through the third trimester of gestation. Regarding the newborns, in all groups, IgG levels exceeded their mother's values by a ~2.4%. A higher expression of FcRn was detected in placentas from newborns at week 36 of gestation onwards. CONCLUSION: Our results obtained from clinical samples, were in line with previous descriptions in model systems and confirmed that the IgG transfer from maternal serum to the fetus is positively correlated with FcRn expression in placental tissue throughout gestation.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/sangue , Troca Materno-Fetal , Placenta/metabolismo , Nascimento Prematuro/imunologia , Receptores Fc/metabolismo , Adulto , Feminino , Humanos , Imuno-Histoquímica , Recém-Nascido , Recém-Nascido Prematuro , Gravidez
16.
Transl Anim Sci ; 2(4): 337-348, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32704717

RESUMO

This study assesses the impact of broilers raised without antibiotics and the information gap that exists between consumer perception and production methods. Specifically looking at risk of eye burns, footpad lesions, and airsacculitis, key indicators of animal welfare, bird-level data are collected on the occurrence and severity of each disease state by the type of antibiotic program: no antibiotics ever, nonmedically important antibiotics, or medically important antibiotics. Odds ratios and marginal effects are calculated to understand how the occurrence and severity change with access to medicine. Broilers never given antibiotics had a higher likelihood of disease states investigated, and with greater severity. In some cases, access to nonmedically important ionophores mitigated the risk of occurrence and severity of the conditions. The finding indicates that the growing trend of raising broilers without antibiotics may negatively affect animal welfare. This stands in contrast to existing consumer research showing that consumers purchase poultry raised without antibiotics because they believe that it promotes healthier animals. Therefore, a significant consumer information gap exists which needs to be addressed. JEL Codes: Q130, Q160, Q180.

17.
mBio ; 8(6)2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162715

RESUMO

Bacterial viruses are among the most numerous biological entities within the human body. These viruses are found within regions of the body that have conventionally been considered sterile, including the blood, lymph, and organs. However, the primary mechanism that bacterial viruses use to bypass epithelial cell layers and access the body remains unknown. Here, we used in vitro studies to demonstrate the rapid and directional transcytosis of diverse bacteriophages across confluent cell layers originating from the gut, lung, liver, kidney, and brain. Bacteriophage transcytosis across cell layers had a significant preferential directionality for apical-to-basolateral transport, with approximately 0.1% of total bacteriophages applied being transcytosed over a 2-h period. Bacteriophages were capable of crossing the epithelial cell layer within 10 min with transport not significantly affected by the presence of bacterial endotoxins. Microscopy and cellular assays revealed that bacteriophages accessed both the vesicular and cytosolic compartments of the eukaryotic cell, with phage transcytosis suggested to traffic through the Golgi apparatus via the endomembrane system. Extrapolating from these results, we estimated that 31 billion bacteriophage particles are transcytosed across the epithelial cell layers of the gut into the average human body each day. The transcytosis of bacteriophages is a natural and ubiquitous process that provides a mechanistic explanation for the occurrence of phages within the body.IMPORTANCE Bacteriophages (phages) are viruses that infect bacteria. They cannot infect eukaryotic cells but can penetrate epithelial cell layers and spread throughout sterile regions of our bodies, including the blood, lymph, organs, and even the brain. Yet how phages cross these eukaryotic cell layers and gain access to the body remains unknown. In this work, epithelial cells were observed to take up and transport phages across the cell, releasing active phages on the opposite cell surface. Based on these results, we posit that the human body is continually absorbing phages from the gut and transporting them throughout the cell structure and subsequently the body. These results reveal that phages interact directly with the cells and organs of our bodies, likely contributing to human health and immunity.


Assuntos
Bacteriófagos/fisiologia , Células Epiteliais/fisiologia , Células Epiteliais/virologia , Transcitose , Bacteriófagos/ultraestrutura , Linhagem Celular , Citosol/virologia , Endocitose , Células Epiteliais/ultraestrutura , Trato Gastrointestinal/citologia , Trato Gastrointestinal/ultraestrutura , Trato Gastrointestinal/virologia , Humanos , Rim/citologia , Rim/virologia , Fígado/citologia , Fígado/virologia , Pulmão/citologia , Pulmão/virologia , Microscopia , Simbiose
18.
Int J Mol Sci ; 18(8)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28817068

RESUMO

Globally, there were 14.1 million new cancer diagnoses and 8.2 million cancer deaths in 2012. For many cancers, conventional therapies are limited in their successes and an improved understanding of disease progression is needed in conjunction with exploration of alternative therapies. The long chain polyunsaturated fatty acid, docosahexaenoic acid (DHA), has been shown to enhance many cellular responses that reduce cancer cell viability and decrease proliferation both in vitro and in vivo. A small number of studies suggest that DHA improves chemotherapy outcomes in cancer patients. It is readily incorporated into cancer cell membranes and, as a result there has been considerable research regarding cell membrane initiated events. For example, DHA has been shown to mediate the induction of apoptosis/reduction of proliferation in vitro and in vivo. However, there is limited research into the effect of DHA on cell cycle regulation in cancer cells and the mechanism(s) by which DHA acts are not fully understood. The purpose of the current review is to provide a critical examination of the literature investigating the ability of DHA to stall progression during different cell cycle phases in cancer cells, as well as the consequences that these changes may have on tumour growth, independently and in conjunction with chemotherapy.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Neoplasias/dietoterapia , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Tratamento Farmacológico , Humanos , Neoplasias/patologia
19.
Am J Physiol Gastrointest Liver Physiol ; 313(5): G467-G475, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28751424

RESUMO

Cancer cell lines have been the mainstay of intestinal epithelial experimentation for decades, due primarily to their immortality and ease of culture. However, because of the inherent biological abnormalities of cancer cell lines, many cellular biologists are currently transitioning away from these models and toward more representative primary cells. This has been particularly challenging, but recent advances in the generation of intestinal organoids have brought the routine use of primary cells within reach of most epithelial biologists. Nevertheless, even with the proliferation of publications that use primary intestinal epithelial cells, there is still a considerable amount of trial and error required for laboratories to establish a consistent and reliable method to culture three-dimensional (3D) intestinal organoids and primary epithelial monolayers. We aim to minimize the time other laboratories spend troubleshooting the technique and present a standard method for culturing primary epithelial cells. Therefore, we have described our optimized, high-yield, cost-effective protocol to grow 3D murine colonoids for more than 20 passages and our detailed methods to culture these cells as confluent monolayers for at least 14 days, enabling a wide variety of potential future experiments. By supporting and expanding on the current literature of primary epithelial culture optimization and detailed use in experiments, we hope to help enable the widespread adoption of these innovative methods and allow consistency of results obtained across laboratories and institutions.NEW & NOTEWORTHY Primary intestinal epithelial monolayers are notoriously difficult to maintain culture, even with the recent advances in the field. We describe, in detail, the protocols required to maintain three-dimensional cultures of murine colonoids and passage these primary epithelial cells to confluent monolayers in a standardized, high-yield and cost-effective manner.


Assuntos
Colo , Células Epiteliais , Mucosa Intestinal , Organoides , Cultura Primária de Células/métodos , Animais , Células Cultivadas , Colo/patologia , Colo/fisiologia , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiologia , Camundongos , Organoides/patologia , Organoides/fisiologia
20.
Proc Natl Acad Sci U S A ; 114(14): E2862-E2871, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28330995

RESUMO

The neonatal crystallizable fragment receptor (FcRn) is responsible for maintaining the long half-life and high levels of the two most abundant circulating proteins, albumin and IgG. In the latter case, the protective mechanism derives from FcRn binding to IgG in the weakly acidic environment contained within endosomes of hematopoietic and parenchymal cells, whereupon IgG is diverted from degradation in lysosomes and is recycled. The cellular location and mechanism by which FcRn protects albumin are partially understood. Here we demonstrate that mice with global or liver-specific FcRn deletion exhibit hypoalbuminemia, albumin loss into the bile, and increased albumin levels in the hepatocyte. In vitro models with polarized cells illustrate that FcRn mediates basal recycling and bidirectional transcytosis of albumin and uniquely determines the physiologic release of newly synthesized albumin into the basal milieu. These properties allow hepatic FcRn to mediate albumin delivery and maintenance in the circulation, but they also enhance sensitivity to the albumin-bound hepatotoxin, acetaminophen (APAP). As such, global or liver-specific deletion of FcRn results in resistance to APAP-induced liver injury through increased albumin loss into the bile and increased intracellular albumin scavenging of reactive oxygen species. Further, protection from injury is achieved by pharmacologic blockade of FcRn-albumin interactions with monoclonal antibodies or peptide mimetics, which cause hypoalbuminemia, biliary loss of albumin, and increased intracellular accumulation of albumin in the hepatocyte. Together, these studies demonstrate that the main function of hepatic FcRn is to direct albumin into the circulation, thereby also increasing hepatocyte sensitivity to toxicity.


Assuntos
Albuminas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Receptores Fc/metabolismo , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Animais , Bile/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Cães , Feminino , Hepatócitos/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Homeostase , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores Fc/genética , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Transcitose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...