Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(21): 8249-8253, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717298

RESUMO

Combinatorial electrochemistry has great promise for accelerated reaction screening, organic synthesis, and catalysis. Recently, we described a new high-throughput electrochemistry platform, colloquially named "Legion". Legion fits the footprint of a 96-well microtiter plate with simultaneous individual control over all 96 electrochemical cells. Here, we demonstrate the versatility of Legion when coupled with high-throughput mass spectrometry (MS) for electrosynthetic product screening and quantitation. Electrosynthesis of benzophenone azine was selected as a model reaction and was arrayed and optimized using a combination of Legion and nanoelectrospray ionization MS. The combination of high-throughput synthesis with Legion and analysis via MS proves a compelling strategy for accelerating reaction discovery and optimization in electro-organic synthesis.

2.
Anal Chem ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780285

RESUMO

We describe micro- and nanoelectrode array analysis with an automated version of the array microcell method (AMCM). Characterization of hundreds of electrodes, with diameters ranging from 100 nm to 2 µm, was carried out by using AMCM voltammetry and chronoamperometry. The influence of solvent evaporation on mass transport in the AMCM pipette and the resultant electrochemical response were investigated, with experimental results supported by finite element method simulations. We also describe the application of AMCM to high-throughput single-entity electrochemistry in measurements of stochastic nanoparticle impacts. Collision experiments recorded 3270 single-particle events from 671 electrodes. Data collection parameters were optimized to enable these experiments to be completed in a few hours, and the collision transient sizes were analyzed with a U-Net deep learning model. Elucidation of collision transient sizes by histograms from these experiments was enhanced due to the large sample size possible with AMCM.

3.
Chem Mater ; 36(6): 3034-3041, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38558921

RESUMO

Electrodeposition of nanoparticles is investigated with a multichannel potentiostat in electrochemical and chemical arrays. De novo deposition and shape control of palladium nanoparticles are explored in arrays with a two-stage strategy. Initial conditions for electrodeposition of materials are discovered in a first stage and then used in a second stage to logically expand chemical and electrochemical parameters. Shape control is analyzed primarily with scanning electron microscopy. Using this approach, optimized conditions for the electrodeposition of cubic palladium nanoparticles were identified from a set of previously untested electrodeposition conditions. The parameters discovered through the array format were then successfully extrapolated to a traditional bulk three-electrode electrochemical cell. Electrochemical arrays were also used to explore electrodeposition parameters reported in previous bulk studies, further demonstrating the correspondence between the array and bulk systems. These results broadly highlight opportunities for electrochemical arrays, both for discovery and for further investigations of electrodeposition in nanomaterials synthesis.

4.
Nanoscale ; 16(16): 8002-8012, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38535987

RESUMO

Metal nanocrystals (NCs) produced by colloidal synthesis have a variety of structural features, such as different planes, edges, and defects. Even from the best colloidal syntheses, these characteristics are distributed differently in each NC. This inherent heterogeneity can play a significant role in the properties displayed by NCs. This manuscript reports the use of electrochemistry to synthesize Au NCs in a system evaluated to track individual NC growth trajectories as a first step toward rapid identification of NCs with different structural features. Au nanocubes were prepared colloidally and deposited onto a glassy carbon electrode using either electrospray or an airbrush, resulting in well-spaced Au nanocubes. The Au nanocubes then served as seeds as gold salt was reduced to deposit metal at constant potential. Deposition at constant potential facilitates overgrowth on the Au nanocubes to achieve new NC shapes. The effects of applied potential, deposition time, precursor concentration, and capping agents on NC shape evolution were studied. The outcomes are correlated to results from traditional colloidal syntheses, providing a bridge between the two synthetic strategies. Moreover, scanning electron microscopy was used to image the same NCs before and after deposition, linking individual seed features to differences in deposition. This ability is anticipated to enable tracking of individual growth trajectories of NCs to elucidate sources of heterogeneity in NC syntheses.

5.
ACS Meas Sci Au ; 3(5): 371-379, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37868360

RESUMO

Electrochemical arrays promise utility for accelerated hypothesis testing and breakthrough discoveries. Herein, we report a new high-throughput electrochemistry platform, colloquially called "Legion," for applications in electroanalysis and electrosynthesis. Legion consists of 96 electrochemical cells dimensioned to match common 96-well plates that are independently controlled with a field-programmable gate array. We demonstrate the utility of Legion by measuring model electrochemical probes, pH-dependent electron transfers, and electrocatalytic dehalogenation reactions. We consider advantages and disadvantages of this new instrumentation, with the hope of expanding the electrochemical toolbox.

6.
J Electrochem Soc ; 170(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38766570

RESUMO

Single nanopores in silicon nitride membranes are asymmetrically modified with Nafion and investigated with scanning ion conductance microscopy, where Nafion alters local ion concentrations at the nanopore. Effects of applied transmembrane potentials on local ion concentrations are examined, with the Nafion film providing a reservoir of cations in close proximity to the nanopore. Fluidic diodes based on ion concentration polarization are observed in the current-voltage response of the nanopore and in approach curves of SICM nanopipette in the vicinity of the nanopore. Experimental results are supported with finite element method simulations that detail ion depletion and enrichment of the nanopore/Nafion/nanopipette environment.

7.
J Electrochem Soc ; 169(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35812015

RESUMO

The catalytic reduction of ethyl chloroacetate (ECA) by hydroxocobalamin (HOCbl) in dimethylformamide was studied electrochemically and spectroelectrochemically to identify initial steps in the reaction between the electrogenerated Co(I) center of cobalamin (cob(I)alamin) and ECA. Cyclic voltammograms of HOCbl in the presence of ECA show a small increase in current related to reduction of Co(II) to Co(I), and a new peak at more negative potentials related to reduction of an ethyl carboxymethyl-Cbl intermediate. The oxidation state of HOCbl during catalysis was monitored by means of spectroelectrochemical controlled-potential bulk electrolysis. Addition of ECA to electrogenerated cob(I)alamin initially generates the Co(II) form (cob(II)alamin) followed by a gradual formation of an ethyl carboxymethyl-Cbl intermediate. Controlled-potential bulk electrolysis was performed to identify products formed from catalytic reduction of ECA by electrogenerated cob(I)alamin and quantify the number of electrons transferred per molecule of ECA. Product distributions and coulometric results, together with the results of voltammograms and spectroelectrochemical controlled-potential bulk electrolysis, were interpreted to propose a reaction mechanism.

8.
J Am Chem Soc ; 144(28): 12673-12680, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35793438

RESUMO

The conversion of CO2 into value-added products is a compelling way of storing energy derived from intermittent renewable sources and can bring us closer to a closed-loop anthropogenic carbon cycle. The ability to synthesize nanocrystals of well-defined structure and composition has invigorated catalysis science with the promise of nanocrystals that selectively express the most favorable sites for efficient catalysis. The performance of nanocrystal catalysts for the CO2 reduction reaction (CO2RR) is typically evaluated with nanocrystal ensembles, which returns an averaged system-level response of complex catalyst-modified electrodes with each nanocrystal likely contributing a different (unknown) amount. Measurements at single nanocrystals, taken in the context of statistical analysis of a population, and comparison to macroscale measurements are necessary to untangle the complexity of the ever-present heterogeneity in nanocrystal catalysts, achieve true structure-property correlation, and potentially identify nanocrystals with outlier performance. Here, we employ environment-controlled scanning electrochemical cell microscopy to isolate and investigate the electrocatalytic CO2RR response of individual facet-defined gold nanocrystals. Using correlative microscopy approaches, we conclusively demonstrate that {110}-terminated gold rhombohedra possess superior activity and selectivity for CO2RR compared with {111}-terminated octahedra and high-index {310}-terminated truncated ditetragonal prisms, especially at low overpotentials where electrode kinetics is anticipated to dominate the current response. The methodology framework described here could inform future studies of complex electrocatalytic processes through correlative single-entity and macroscale measurement techniques.


Assuntos
Dióxido de Carbono , Nanopartículas , Dióxido de Carbono/química , Catálise , Ouro , Nanopartículas/química , Propriedades de Superfície
9.
ACS Catal ; 12(2): 935-942, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35340760

RESUMO

Vitamin B12 derivatives catalyze a wide range of organic transformations, but B12-dependent enzymes are underutilized in biocatalysis relative to other metalloenzymes. In this study, we engineered a variant of the transcription factor CarH, called CarH*, that catalyzes styrene C-H alkylation with improved yields (2-6.5-fold) and selectivity relative to cobalamin. While the native function of CarH involves transcription regulation via adenosylcobalamin (AdoCbl) Co(III)-carbon bond cleavage and ß-hydride elimination to generate 4',5'-didehydroadenosine, CarH*-catalyzed styrene alkylation proceeds via non-native oxidative addition and olefin addition coupled with a native-like ß-hydride elimination. Mechanistic studies on this reaction echo findings from earlier studies on AdoCbl homolysis to suggest that CarH* selectivity results from its ability to impart a cage effect on radical intermediates. These findings lay the groundwork for the development of B12-dependent enzymes as catalysts for non-native transformations.

10.
Anal Bioanal Chem ; 414(1): 525-532, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34170347

RESUMO

Dipeptide repeats (DPRs) associated with C9orf72 repeat expansions perturb nucleocytoplasmic transport and are implicated in the pathogenesis of amyotrophic lateral sclerosis. We present a synthetic hydrogel platform that can be used to analyze aspects of the molecular interaction of dipeptide repeats and the phenylalanine-glycine (FG) phase of the nuclear pore complex (NPC). Hydrogel scaffolds composed of acrylamide and copolymerized with FG monomers are first formed to recapitulate key FG interactions found in the NPC. With labeled probes, we find evidence that toxic arginine-rich DPRs (poly-GR and poly-PR), but not the non-toxic poly-GP, target NPC hydrogel mimics and block selective entry of a key nuclear transport receptor, importin beta (Impß). The ease with which these synthetic hydrogel mimics can be adjusted/altered makes them an invaluable tool to dissect complex molecular interactions that underlie cellular transport processes and their perturbation in disease.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Transporte Ativo do Núcleo Celular , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/química , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos , Humanos , Hidrogéis , Poro Nuclear/metabolismo , Poro Nuclear/patologia
11.
Chem Rev ; 122(3): 3292-3335, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34919393

RESUMO

Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.


Assuntos
Eletrólitos , Eletrodos
12.
Sci Rep ; 11(1): 21723, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741051

RESUMO

Coronavirus with intact infectivity attached to PPE surfaces pose significant threat to the spread of COVID-19. We tested the hypothesis that an electroceutical fabric, generating weak potential difference of 0.5 V, disrupts the infectivity of coronavirus upon contact by destabilizing the electrokinetic properties of the virion. Porcine respiratory coronavirus AR310 particles (105) were placed in direct contact with the fabric for 1 or 5 min. Following one minute of contact, zeta potential of the porcine coronavirus was significantly lowered indicating destabilization of its electrokinetic properties. Size-distribution plot showed appearance of aggregation of the virus. Testing of the cytopathic effects of the virus showed eradication of infectivity as quantitatively assessed by PI-calcein and MTT cell viability tests. This work provides the rationale to consider the studied electroceutical fabric, or other materials with comparable property, as material of choice for the development of PPE in the fight against COVID-19.


Assuntos
COVID-19/prevenção & controle , COVID-19/transmissão , Eletroquímica/métodos , Têxteis , Animais , Anti-Infecciosos , Líquidos Corporais , Linhagem Celular , Sobrevivência Celular , Fluoresceínas , Humanos , Peróxido de Hidrogênio , Cinética , Nanopartículas , Propídio , SARS-CoV-2 , Suínos , Temperatura , Sais de Tetrazólio , Tiazóis , Vírion , Cicatrização
13.
Small Methods ; 5(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34541301

RESUMO

The blood brain barrier (BBB) protects the central nervous system from toxins and pathogens in the blood by regulating permeation of molecules through the barrier interface. In vitro BBB models described to date reproduce some aspects of BBB functionality, but also suffer from incomplete phenotypic expression of brain endothelial traits, difficulty in reproducibility and fabrication, or overall cost. To address these limitations, we describe a three-dimensional (3D) BBB model based on a hybrid paper/nanofiber scaffold. The cell culture platform utilizes lens paper as a framework to accommodate 3D culture of astrocytes. An electrospun nanofiber layer is coated onto one face of the paper to mimic the basement membrane and support growth of an organized two-dimensional layer of endothelial cells (ECs). Human induced pluripotent stem cell-derived ECs and astrocytes are co-cultured to develop a human BBB model. Morphological and spatial organization of model are validated with confocal microscopy. Measurements of transendothelial resistance and permeability demonstrate the BBB model develops a high-quality barrier and responds to hyperosmolar treatments. RNA-sequencing shows introduction of astrocytes both regulates EC tight junction proteins and improves endothelial phenotypes related to vasculogenesis. This model shows promise as a model platform for future in vitro studies of the BBB.

14.
Anal Methods ; 13(36): 4105-4113, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34554166

RESUMO

Single entity electrochemical (SEE) studies that can probe activities and heterogeneity in activities at nanoscale require samples that contain single and isolated particles. Single, isolated nanoparticles are achieved here with electrospray deposition of colloidal nanoparticle solutions, with simple instrumentation. Role of three electrospray (ES) parameters, viz. spray distance (emitter tip-to-substrate distance), ES current and emitter tip diameter, in the ES deposition of single Au nano-octahedra (Au ODs) is examined. The ES deposition of single, isolated Au ODs are analyzed in terms of percentage of single NPs and local surface density of deposition. The local surface density of ES deposition of single Au ODs was found to increase with decrease in spray distance and emitter tip diameter, and increase in ES current. While the percentage of single particle ES deposition increased with increase in spray distance and decrease in emitter tip size. No significant change in the single Au ODs ES deposition percentage was observed with change in ES current values included in this study. The most favourable conditions in the ES deposition of Au ODs in this study resulted in the local surface density of 0.26 ± 0.05 single particles per µm2 and observation of 96.3% single Au OD deposition.


Assuntos
Ouro , Nanopartículas Metálicas
15.
Bioelectrochemistry ; 142: 107921, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34419917

RESUMO

Wireless electroceutical dressing (WED) fabric kills bacteria and disrupts bacterial biofilm. This work tested, comparing with standard of care topical antibiotic ketoconazole, whether the weak electric field generated by WED is effective to manage infection caused by ketoconazole-resistant yeast Candida albicans. WED inhibited Candida albicans biofilm formation and planktonic growth. Unlike ketoconazole, WED inhibited yeast to hyphal transition and downregulated EAP1 curbing cell attachment. In response to WED-dependent down-regulation of biofilm-forming BRG1 and ROB1, BCR1 expression was markedly induced in what seems to be a futile compensatory response. WED induced NRG1 and TUP1, negative regulators of filamentation; it down-regulated EFG1, a positive regulator of hyphal pathway. Consistent with the anti-hyphal properties of WED, the expression of ALS3 and HWP1 were diminished. Ketoconazole failed to reproduce the effects of WED on NRG1, TUP1 and EFG1. WED blunted efflux pump activity; this effect was in direct contrast to that of ketoconazole. WED exposure compromised cellular metabolism. In the presence of ketoconazole, the effect was synergistic. Unlike ketoconazole, WED caused membrane depolarization, changes in cell wall composition and loss of membrane integrity. This work presents first evidence that weak electric field is useful in managing pathogens which are otherwise known to be antibiotic resistant.


Assuntos
Bandagens/microbiologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/metabolismo , Candidíase/terapia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Técnicas Eletroquímicas/métodos
16.
Environ Sci Technol ; 55(18): 12233-12242, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34449200

RESUMO

Unique surface properties of aluminosilicate clay minerals arise from anisotropic distribution of surface charge across their layered structures. Yet, a molecular-level understanding of clay mineral surfaces has been hampered by the lack of analytical techniques capable of measuring surface charges at the nanoscale. This is important for understanding the reactivity, colloidal stability, and ion-exchange capacity properties of clay minerals, which constitute a major fraction of global soils. In this work, scanning ion conductance microscopy (SICM) is used for the first time to visualize the surface charge and topography of dickite, a well-ordered member of the kaolin subgroup of clay minerals. Dickite displayed a pH-independent negative charge on basal surfaces whereas the positive charge on edges increased from pH 6 to 3. Surface charges responded to malonate addition, which promoted dissolution/precipitation reactions. Results from SICM were used to interpret heterogeneous reactivity studies showing that gas-phase nitrous acid (HONO) is released from the protonation of nitrite at Al-OH2+ groups on dickite edges at pH well above the aqueous pKa of HONO. This study provides nanoscale insights into mineral surface processes that affect environmental processes on the local and global scale.


Assuntos
Caulim , Ácido Nitroso , Argila , Microscopia , Minerais
17.
Langmuir ; 37(25): 7701-7711, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34143943

RESUMO

Cetyltrimethylammonium bromide (CTAB) is a widely used surfactant that aids the aqueous synthesis of colloidal nanoparticles. However, the presence of residual CTAB on nanoparticle surfaces can significantly impact nanoparticle applications, such as catalysis and sensing, under hydrated conditions. As such, consideration of the presence and quantity of CTAB on nanoparticle surfaces under hydrated conditions is of significance. Herein, as part of an integrated material characterization framework, we demonstrate the feasibility of in situ atomic force microscopy (AFM) to detect CTAB on the surface of Au nanocubes (Au NCs) under hydrated conditions, which enabled superior characterization compared to conventional spectroscopic methods. In situ force-distance (FD) spectroscopy and Kelvin probe force microscopy (KPFM) measurements support additional characterization of adsorbed CTAB, while correlative in situ AFM and scanning electron microscopy (SEM) measurements were used to evaluate sequential steps of CTAB removal from Au NCs across hydrated and dehydrated environments, respectively. Notably, a substantial quantity of CTAB remained on the Au NC surface after methanol washing, which was detected in AFM measurements but was not detected in infrared spectroscopy measurements. Subsequent electrochemical cleaning was found to be critically important to remove CTAB from the Au NC surface. Correlative measurements were also performed on individual nanoparticles, which further validate the method described here as a powerful tool to determine the extent and degree of CTAB removal from nanoparticle surfaces. This AFM-based method is broadly applicable to characterize the presence and removal of ligands from nanomaterial surfaces under hydrated conditions.

18.
Anal Chem ; 93(13): 5355-5359, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33759498

RESUMO

We describe the incorporation of gated ion channels into probes for scanning ion conductance microscopy (SICM) as a robust platform for collecting spatial information at interfaces. Specifically, a dual-barrel pipet is used, where one barrel controls the pipet position and the second barrel houses voltage-gated transient receptor potential vanilloid 1 (TRPV1) channels excised in a sniffer-patch configuration. Spatially resolved sensing with TRPV1 channels is demonstrated by imaging a porous membrane where a transmembrane potential across the membrane generates local electric field gradients at pores that activate TRPV1 channels when the probe is in the vicinity of the pore. The scanning routine and automated signal analysis demonstrated provide a generalizable approach to employing gated ion channels as sensors for imaging applications.


Assuntos
Canais Iônicos , Microscopia , Porosidade
19.
Chem Rev ; 121(19): 11726-11768, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33295182

RESUMO

Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.


Assuntos
Eletrólitos , Microscopia , Eletrodos , Íons/química , Microscopia/métodos
20.
Chem Sci ; 11(5): 1307-1315, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33209250

RESUMO

The use of hyperosmolar agents (osmotherapy) has been a major treatment for intracranial hypertension, which occurs frequently in brain diseases or trauma. However, side-effects of osmotherapy on the brain, especially on the blood-brain barrier (BBB) are still not fully understood. Hyperosmolar conditions, termed hyperosmolality here, are known to transiently disrupt the tight junctions (TJs) at the endothelium of the BBB resulting in loss of BBB function. Present techniques for evaluation of BBB transport typically reveal aggregated responses from the entirety of BBB transport components, with little or no opportunity to evaluate heterogeneity present in the system. In this study, we utilized potentiometric-scanning ion conductance microscopy (P-SICM) to acquire nanometer-scale conductance maps of Madin-Darby Canine Kidney strain II (MDCKII) cells under hyperosmolality, from which two types of TJs, bicellular tight junctions (bTJs) and tricellular tight junctions (tTJs), can be visualized and differentiated. We discovered that hyperosmolality leads to increased conductance at tTJs without significant alteration in conductance at bTJs. To quantify this effect, an automated computer vision algorithm was designed to extract and calculate conductance components at both tTJs and bTJs. Additionally, lowering Ca2+ concentration in the bath facilitates tTJ disruption under hyperosmolality. Strengthening tTJ structure by overexpressing immunoglobulin-like domain-containing receptor 1 (ILDR1) protein abrogates the effect of hyperosmolality. We posit that osmotic stress physically disrupts tTJ structure, as evidenced by super-resolution microscopy. Findings from this study not only provide a high-resolution view of TJ structure and function, but also can inform current osmotherapy and drug delivery strategies for brain diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...