Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 136(3): 583-591, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299223

RESUMO

Herein, we examine the human exercise response following cannabis inhalation, taking into consideration varied cannabinoid concentrations and different inhalation methods. A semirandomized crossover study design was used, with measures of perceived exertion and physiological responses to submaximal and maximal exercise. Participants (n = 14, 9 males 5 females) completed exercise after 1) smoking Δ-9-tetrahydrocannabinol (THC)-predominant cannabis (S-THC), 2) inhaling aerosol (vaporizing) from THC-predominant cannabis (V-THC), 3) inhaling aerosol from cannabidiol (CBD)-predominant cannabis (V-CBD), or 4) under control conditions. All exercise was performed on a cycle ergometer, with submaximal testing performed at 100 W followed by an evaluation of maximal exercise performance using an all-out 20-min time trial. Metabolism was characterized via the analysis of expired gases while subjective ratings of perceived exertion (RPE) were reported. During submaximal cycling, heart rate was higher during S-THC and V-THC compared with both control and V-CBD (all P < 0.02). During maximal exercise, V̇e was lower in V-THC compared with control, S-THC, and V-CBD (all P < 0.03), as was S-THC compared with control (P < 0.05). Both V̇o2 and RPE were similar between conditions during maximal exercise (both P > 0.1). Mean power output during the 20-min time trial was significantly lower in the S-THC and V-THC conditions compared with both control and V-CBD (all P < 0.04). Cannabis containing THC alters the physiological response to maximal and submaximal exercise, largely independent of the inhalation method. THC-containing cannabis negatively impacts vigorous exercise performance during a sustained 20-min effort, likely due to physiological and psychotropic effects. Inhalation of cannabis devoid of THC and primarily containing CBD has little physiological effect on the exercise response or performance.NEW & NOTEWORTHY Inhalation of cannabis containing THC alters physiological responses to both submaximal and maximal exercise and reduces mean power output during a 20-min time trial, regardless of whether it is inhaled as smoke or aerosol. In contrast, cannabis devoid of THC and predominantly containing CBD has no effect on physiological responses to exercise or performance.


Assuntos
Cannabis , Dronabinol , Feminino , Humanos , Masculino , Aerossóis , Canabidiol , Canabinoides , Cannabis/química , Estudos Cross-Over , Dronabinol/análise , Ciclismo
2.
Scand J Med Sci Sports ; 34(1): e14551, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093477

RESUMO

PURPOSE: The purpose of the study was to investigate whether carbohydrate utilization is altered during exercise in overreached endurance athletes and examine the utility of continuous glucose monitors (CGM) to detect overreaching status. METHODS: Eleven endurance athletes (M:8, F:3) completed a 5-week training block consisting of 1 week of reduced training (PRE), 3 weeks of high-intensity overload training (POST), and 1 week of recovery training (REC). Participants completed a Lamberts and Lambert Submaximal Cycling Test (LSCT) and 5 km time-trial at PRE, POST, and REC time points, 15 min following the ingestion of a 50 g glucose beverage with glucose recorded each minute via CGM. RESULTS: Performance in the 5 km time-trial was reduced at POST (∆-7 ± 10 W, p = 0.04, η p 2 = 0.35) and improved at REC (∆12 ± 9 W from PRE, p = 0.01, η p 2 = 0.66), with reductions in peak lactate (∆-3.0 ± 2.0 mmol/L, p = 0.001, η p 2 = 0.71), peak HR (∆-6 ± 3 bpm, p < 0.001, η p 2 = 0.86), and Hooper-Mackinnon well-being scores (∆10 ± 5 a.u., p < 0.001, η p 2 = 0.79), indicating athletes were functionally overreached. The respiratory exchange ratio was suppressed at POST relative to REC during the 60% (POST: 0.80 ± 0.05, REC: 0.87 ± 0.05, p < 0.001, η p 2 = 0.74), and 80% (POST: 0.93 ± 0.05, REC: 1.00 ± 0.05, p = 0.003, η p 2 = 0.68) of HR-matched submaximal stages of the LSCT. CGM glucose was reduced during HR-matched submaximal exercise in the LSCT at POST (p = 0.047, η p 2 = 0.36), but not the 5 km time-trial (p = 0.07, η p 2 = 0.28) in overreached athletes. CONCLUSION: This preliminary investigation demonstrates a reduction in CGM-derived glucose and carbohydrate oxidation during submaximal exercise in overreached athletes. The use of CGM during submaximal exercise following standardized nutrition could be employed as a monitoring tool to detect overreaching in endurance athletes.


Assuntos
Exercício Físico , Resistência Física , Humanos , Glicemia , Glucose , Atletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...