Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
PLoS One ; 19(5): e0302653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748750

RESUMO

Out-of-hospital cardiac arrest (OHCA) affects over 360,000 adults in the United States each year with a 50-80% mortality prior to reaching medical care. Despite aggressive supportive care and targeted temperature management (TTM), half of adults do not live to hospital discharge and nearly one-third of survivors have significant neurologic injury. The current treatment approach following cardiac arrest resuscitation consists primarily of supportive care and possible TTM. While these current treatments are commonly used, mortality remains high, and survivors often develop lasting neurologic and cardiac sequela well after resuscitation. Hence, there is a critical need for further therapeutic development of adjunctive therapies. While select therapeutics have been experimentally investigated, one promising agent that has shown benefit is CO. While CO has traditionally been thought of as a cellular poison, there is both experimental and clinical evidence that demonstrate benefit and safety in ischemia with lower doses related to improved cardiac/neurologic outcomes. While CO is well known for its poisonous effects, CO is a generated physiologically in cells through the breakdown of heme oxygenase (HO) enzymes and has potent antioxidant and anti-inflammatory activities. While CO has been studied in myocardial infarction itself, the role of CO in cardiac arrest and post-arrest care as a therapeutic is less defined. Currently, the standard of care for post-arrest patients consists primarily of supportive care and TTM. Despite current standard of care, the neurological prognosis following cardiac arrest and return of spontaneous circulation (ROSC) remains poor with patients often left with severe disability due to brain injury primarily affecting the cortex and hippocampus. Thus, investigations of novel therapies to mitigate post-arrest injury are clearly warranted. The primary objective of this proposed study is to combine our expertise in swine models of CO and cardiac arrest for future investigations on the cellular protective effects of low dose CO. We will combine our innovative multi-modal diagnostic platform to assess cerebral metabolism and changes in mitochondrial function in swine that undergo cardiac arrest with therapeutic application of CO.


Assuntos
Monóxido de Carbono , Modelos Animais de Doenças , Animais , Suínos , Monóxido de Carbono/farmacologia , Monóxido de Carbono/metabolismo , Parada Cardíaca/terapia , Parada Cardíaca Extra-Hospitalar/terapia , Masculino , Reanimação Cardiopulmonar/métodos
2.
Neurophotonics ; 11(1): 015008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38464864

RESUMO

Significance: Bedside cerebral blood flow (CBF) monitoring has the potential to inform and improve care for acute neurologic diseases, but technical challenges limit the use of existing techniques in clinical practice. Aim: Here, we validate the Openwater optical system, a novel wearable headset that uses laser speckle contrast to monitor microvascular hemodynamics. Approach: We monitored 25 healthy adults with the Openwater system and concurrent transcranial Doppler (TCD) while performing a breath-hold maneuver to increase CBF. Relative blood flow (rBF) was derived from changes in speckle contrast, and relative blood volume (rBV) was derived from changes in speckle average intensity. Results: A strong correlation was observed between beat-to-beat optical rBF and TCD-measured cerebral blood flow velocity (CBFv), R=0.79; the slope of the linear fit indicates good agreement, 0.87 (95% CI: 0.83 -0.92). Beat-to-beat rBV and CBFv were also strongly correlated, R=0.72, but as expected the two variables were not proportional; changes in rBV were smaller than CBFv changes, with linear fit slope of 0.18 (95% CI: 0.17 to 0.19). Further, strong agreement was found between rBF and CBFv waveform morphology and related metrics. Conclusions: This first in vivo validation of the Openwater optical system highlights its potential as a cerebral hemodynamic monitor, but additional validation is needed in disease states.

3.
J Med Toxicol ; 20(1): 39-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847352

RESUMO

INTRODUCTION: Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). One of the glaring gaps is the lack of rigorous experimental models that may recapitulate survivors of acute CO poisoning in the early phase. The primary objective of this preliminary study is to use our advanced swine platform of acute CO poisoning to develop a clinically relevant survivor model to perform behavioral assessment and MRI imaging that will allow future development of biomarkers and therapeutics. METHODS: Four swine (10 kg) were divided into two groups: control (n = 2) and CO (n = 2). The CO group received CO at 2000 ppm for over 120 min followed by 30 min of re-oxygenation at room air for one swine and 150 min followed by 30 min of re-oxygenation for another swine. The two swine in the sham group received room air for 150 min. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. Following exposures, all surviving animals were observed for a 24-h period with neurobehavioral assessment and imaging. At the end of the 24-h period, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. RESULTS: While a preliminary ongoing study, animals in the CO group showed alterations in cerebral metabolism and cellular function in the acute exposure phase with possible sustained mitochondrial changes 24 h after the CO exposure ended. CONCLUSIONS: This preliminary research further establishes a large animal swine model investigating survivors of CO poisoning to measure translational metrics relevant to clinical medicine that includes a basic neurobehavioral assessment and post exposure cellular measures.


Assuntos
Intoxicação por Monóxido de Carbono , Animais , Suínos , Intoxicação por Monóxido de Carbono/terapia , Mitocôndrias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Imageamento por Ressonância Magnética , Monóxido de Carbono/toxicidade , Monóxido de Carbono/metabolismo
4.
medRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38105980

RESUMO

Background: Infants with complex congenital heart disease (CHD) require life-saving corrective/palliative heart surgery in the first weeks of life. These infants are at risk for brain injury and poor neurodevelopmental outcomes. Cerebral microhemorrhages (CMH) are frequently seen after neonatal bypass heart surgery, but it remains unknown if CMH are a benign finding or constitute injury. Herein, we investigate the risk factors for developing CMH and their clinical significance. Methods: 192 infants with CHD undergoing corrective cardiac surgery with cardiopulmonary bypass (CPB) at a single institution were prospectively evaluated with pre-(n = 183) and/or postoperative (n = 162) brain magnetic resonance imaging (MRI). CMH severity was scored based on total number of microhemorrhages. Antenatal, perioperative, and postoperative candidate risk factors for CMH and neurodevelopmental (ND) outcomes were analyzed. Eighteen-month neurodevelopmental outcomes were assessed using the Bayley-III Scales of Infants and Toddler Development in a subset of patients (n = 82). Linear regression was used to analyze associations between risk factors or ND outcomes and presence/number of CMH. Results: The most common CHD subtypes were hypoplastic left heart syndrome (HLHS) (37%) and transposition of the great arteries (TGA) (33%). Forty-two infants (23%) had CMH present on MRI before surgery and 137 infants (85%) post-surgery. No parameters evaluated were significant risk factors for preoperative CMH. In multivariate analysis, cardiopulmonary bypass (CPB) duration (p < 0.0001), use of extracorporeal membrane oxygenation (ECMO) support (p < 0.0005), postoperative seizure(s) (p < 0.03), and lower birth weight (p < 0.03) were associated with new or worsened CMH postoperatively. Higher CMH number was associated with lower scores on motor (p < 0.03) testing at 18 months. Conclusion: CMH is a common imaging finding in infants with CHD with increased prevalence and severity after CPB and adverse impact on neurodevelopmental outcomes starting at a young age. Longer duration of CPB and need for postoperative ECMO were the most significant risk factors for developing CMH. However, presence of CMH on preoperative scans indicates non-surgical risk factors that are yet to be identified. Neuroprotective strategies to mitigate risk factors for CMH may improve neurodevelopmental outcomes in this vulnerable population.

5.
Metabolites ; 13(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999249

RESUMO

Cardiopulmonary bypass (CPB) provides cerebral oxygenation and blood flow (CBF) during neonatal congenital heart surgery, but the impacts of CPB on brain oxygen supply and metabolic demands are generally unknown. To elucidate this physiology, we used diffuse correlation spectroscopy and frequency-domain diffuse optical spectroscopy to continuously measure CBF, oxygen extraction fraction (OEF), and oxygen metabolism (CMRO2) in 27 neonatal swine before, during, and up to 24 h after CPB. Concurrently, we sampled cerebral microdialysis biomarkers of metabolic distress (lactate-pyruvate ratio) and injury (glycerol). We applied a novel theoretical approach to correct for hematocrit variation during optical quantification of CBF in vivo. Without correction, a mean (95% CI) +53% (42, 63) increase in hematocrit resulted in a physiologically improbable +58% (27, 90) increase in CMRO2 relative to baseline at CPB initiation; following correction, CMRO2 did not differ from baseline at this timepoint. After CPB initiation, OEF increased but CBF and CMRO2 decreased with CPB time; these temporal trends persisted for 0-8 h following CPB and coincided with a 48% (7, 90) elevation of glycerol. The temporal trends and glycerol elevation resolved by 8-24 h. The hematocrit correction improved quantification of cerebral physiologic trends that precede and coincide with neurological injury following CPB.

6.
medRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873126

RESUMO

Bedside cerebral blood flow (CBF) monitoring has the potential to inform and improve care for acute neurologic diseases, but technical challenges limit the use of existing techniques in clinical practice. Here we validate the Openwater optical system, a novel wearable headset that uses laser speckle contrast to monitor microvascular hemodynamics. We monitored 25 healthy adults with the Openwater system and concurrent transcranial Doppler (TCD) while performing a breath-hold maneuver to increase CBF. Relative blood flow (rBF) was derived from the changes in speckle contrast, and relative blood volume (rBV) was derived from the changes in speckle average intensity. A strong correlation was observed between beat-to-beat optical rBF and TCD-measured cerebral blood flow velocity (CBFv), R=0.79; the slope of the linear fit indicates good agreement, 0.87 (95% CI:0.83-0.92). Beat-to-beat rBV and CBFv were strongly correlated, R=0.72, but as expected the two variables were not proportional; changes in rBV were smaller than CBFv changes, with linear fit slope of 0.18 (95% CI:0.17-0.19). Further, strong agreement was found between rBF and CBFv waveform morphology and related metrics. This first in vivo validation of the Openwater optical system highlights its potential as a cerebral hemodynamic monitor, but additional validation is needed in disease states.

7.
J Neurointerv Surg ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898551

RESUMO

BACKGROUND: Endovascular therapy (EVT) has revolutionized the treatment of acute stroke, but large vessel recanalization does not always result in tissue-level reperfusion. Cerebral blood flow (CBF) is not routinely monitored during EVT. We aimed to leverage diffuse correlation spectroscopy (DCS), a novel transcranial optical imaging technique, to assess the relationship between microvascular CBF and post-EVT outcomes. METHODS: Frontal lobe CBF was monitored by DCS in 40 patients undergoing EVT. Baseline CBF deficit was calculated as the percentage of CBF impairment on pre-EVT CT perfusion. Microvascular reperfusion was calculated as the percentage increase in DCS-derived CBF that occurred with recanalization. The adequacy of reperfusion was defined by persistent CBF deficit, calculated as: baseline CBF deficit - microvascular reperfusion. A good functional outcome was defined as 90-day modified Rankin Scale score ≤2. RESULTS: Thirty-six of 40 patients achieved successful recanalization, in whom microvascular reperfusion in itself was not associated with infarct volume or functional outcome. However, patients with good functional outcomes had a smaller persistent CBF deficit (median 1% (IQR -11%-16%)) than patients with poor outcomes (median 28% (IQR 2-50%)) (p=0.02). Smaller persistent CBF deficit was also associated with smaller infarct volume (p=0.004). Multivariate models confirmed that persistent CBF deficit was independently associated with infarct volume and functional outcome. CONCLUSIONS: CBF augmentation alone does not predict post-EVT outcomes, but when microvascular reperfusion closely matches the baseline CBF deficit, patients experience favorable clinical and radiographic outcomes. By recognizing inadequate reperfusion, bedside CBF monitoring may provide opportunities to personalize post-EVT care aimed at CBF optimization.

8.
Front Pediatr ; 11: 1125985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425272

RESUMO

Background: Surgical procedures involving the aortic arch present unique challenges to maintaining cerebral perfusion, and optimal neuroprotective strategies to prevent neurological injury during such high-risk procedures are not completely understood. The use of antegrade cerebral perfusion (ACP) has gained favor as a neuroprotective strategy over deep hypothermic circulatory arrest (DHCA) due to the ability to selectively perfuse the brain. Despite this theoretical advantage over DHCA, there has not been conclusive evidence that ACP is superior to DHCA. One potential reason for this is the incomplete understanding of ideal ACP flow rates to prevent both ischemia from underflowing and hyperemia and cerebral edema from overflowing. Critically, there are no continuous, noninvasive measurements of cerebral blood flow (CBF) and cerebral oxygenation (StO2) to guide ACP flow rates and help develop standard clinical practices. The purpose of this study is to demonstrate the feasibility of using noninvasive, diffuse optical spectroscopy measurements of CBF and cerebral oxygenation during the conduct of ACP in human neonates undergoing the Norwood procedure. Methods: Four neonates prenatally diagnosed with hypoplastic left heart syndrome (HLHS) or a similar variant underwent the Norwood procedure with continuous intraoperative monitoring of CBF and cerebral oxygen saturation (StO2) using two non-invasive optical techniques, namely diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy (FD-DOS). Changes in CBF and StO2 due to ACP were calculated by comparing these parameters during a stable 5 min period of ACP to the last 5 min of full-body CPB immediately prior to ACP initiation. Flow rates for ACP were left to the discretion of the surgeon and ranged from 30 to 50 ml/kg/min, and all subjects were cooled to 18°C prior to initiation of ACP. Results: During ACP, the continuous optical monitoring demonstrated a median (IQR) percent change in CBF of -43.4% (38.6) and a median (IQR) absolute change in StO2 of -3.6% (12.3) compared to a baseline period during full-body cardiopulmonary bypass (CPB). The four subjects demonstrated varying responses in StO2 due to ACP. ACP flow rates of 30 and 40 ml/kg/min (n = 3) were associated with decreased CBF during ACP compared to full-body CPB. Conversely, one subject with a higher flow6Di rate of 50 ml/kg/min demonstrated increased CBF and StO2 during ACP. Conclusions: This feasibility study demonstrates that novel diffuse optical technologies can be utilized for improved neuromonitoring in neonates undergoing cardiac surgery where ACP is utilized. Future studies are needed to correlate these findings with neurological outcomes to inform best practices during ACP in these high-risk neonates.

9.
IEEE J Biomed Health Inform ; 27(10): 4719-4727, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478027

RESUMO

Monitoring physiological waveforms, specifically hemodynamic variables (e.g., blood pressure waveforms) and end-tidal CO2 (EtCO2), during pediatric cardiopulmonary resuscitation (CPR) has been demonstrated to improve survival rates and outcomes when compared to standard depth-guided CPR. However, waveform guidance has largely been based on thresholds for single parameters and therefore does not leverage all the information contained in multimodal data. We hypothesize that the combination of multimodal physiological features improves the prediction of the return of spontaneous circulation (ROSC), the clinical indicator of short-term CPR success. We used machine learning algorithms to evaluate features extracted from eight low-resolution (4 samples per minute) physiological waveforms to predict ROSC. The waveforms were acquired from the 2nd to 10th minute of CPR in pediatric swine models of cardiac arrest (N = 89, 8-12 kg). The waveforms were divided into segments with increasing length (both forward and backward) for feature extraction, and machine learning algorithms were trained for ROSC prediction. For the full CPR period (2nd to 10th minute), the area under the receiver operating characteristics curve (AUC) was 0.93 (95% CI: 0.87-0.99) for the multivariate model, 0.70 (0.55-0.85) for EtCO2 and 0.80 (0.67-0.93) for coronary perfusion pressure. The best prediction performances were achieved when the period from the 6th to the 10th minute was included. Poor predictions were observed for some individual waveforms, e.g., right atrial pressure. In conclusion, multimodal waveform features carry relevant information for ROSC prediction. Using multimodal waveform features in CPR guidance has the potential to improve resuscitation success and reduce mortality.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Humanos , Animais , Suínos , Criança , Retorno da Circulação Espontânea , Parada Cardíaca/terapia , Hemodinâmica , Pressão Sanguínea
10.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503137

RESUMO

Background: Pediatric neurological injury and disease is a critical public health issue due to increasing rates of survival from primary injuries (e.g., cardiac arrest, traumatic brain injury) and a lack of monitoring technologies and therapeutics for the treatment of secondary neurological injury. Translational, preclinical research facilitates the development of solutions to address this growing issue but is hindered by a lack of available data frameworks and standards for the management, processing, and analysis of multimodal data sets. Methods: Here, we present a generalizable data framework that was implemented for large animal research at the Children's Hospital of Philadelphia to address this technological gap. The presented framework culminates in an interactive dashboard for exploratory analysis and filtered data set download. Results: Compared with existing clinical and preclinical data management solutions, the presented framework accommodates heterogeneous data types (single measure, repeated measures, time series, and imaging), integrates data sets across various experimental models, and facilitates dynamic visualization of integrated data sets. We present a use case of this framework for predictive model development for intra-arrest prediction of cardiopulmonary resuscitation outcome. Conclusions: The described preclinical data framework may serve as a template to aid in data management efforts in other translational research labs that generate heterogeneous data sets and require a dynamic platform that can easily evolve alongside their research.

11.
Biomed Opt Express ; 14(6): 2432-2448, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342705

RESUMO

In this study, we used diffuse optics to address the need for non-invasive, continuous monitoring of cerebral physiology following traumatic brain injury (TBI). We combined frequency-domain and broadband diffuse optical spectroscopy with diffuse correlation spectroscopy to monitor cerebral oxygen metabolism, cerebral blood volume, and cerebral water content in an established adult swine-model of impact TBI. Cerebral physiology was monitored before and after TBI (up to 14 days post injury). Overall, our results suggest that non-invasive optical monitoring can assess cerebral physiologic impairments post-TBI, including an initial reduction in oxygen metabolism, development of cerebral hemorrhage/hematoma, and brain swelling.

12.
Neurophotonics ; 10(2): 025008, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37228905

RESUMO

Significance: The sensitivity to extracerebral tissues is a well-known confounder of diffuse optics. Two-layer (2L) head models can separate cerebral signals from extracerebral artifacts, but they also carry the risk of crosstalk between fitting parameters. Aim: We aim to implement a constrained 2L head model for hybrid diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy (FD-DOS) data and to characterize errors in cerebral blood flow and tissue absorption with the proposed model. Approach: The algorithm uses the analytical solution of a 2L cylinder and an a priori extracerebral layer thickness to fit multidistance FD-DOS (0.8 to 4 cm) and DCS (0.8 and 2.5 cm) data, assuming homogeneous tissue reduced scattering. We characterized the algorithm's accuracy for simulated data with noise generated using a 2L slab and realistic adult head geometries and for in vitro phantom data. Results: Our algorithm recovered the cerebral flow index with 6.3 [2.8, 13.2]% and 34 [30, 42]% (median absolute percent error [interquartile range]) for slab and head geometries, respectively. Corresponding errors in the cerebral absorption coefficient were 5.0 [3.0, 7.9]% and 4.6 [2.4, 7.2]% for the slab and head geometries and 8 [5, 12]% for our phantom experiment. Our results were minimally sensitive to second-layer scattering changes and were robust to cross-talk between fitting parameters. Conclusions: In adults, the constrained 2L algorithm promises to improve FD-DOS/DCS accuracy compared with the conventional semi-infinite approach.

14.
Neuroscience ; 509: 132-144, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460221

RESUMO

Spreading depolarizations (SD) refer to the near-complete depolarization of neurons that is associated with brain injuries such as ischemic stroke. The present gold standard for SD monitoring in humans is invasive electrocorticography (ECoG). A promising non-invasive alternative to ECoG is diffuse optical monitoring of SD-related flow and hemoglobin transients. To investigate the clinical utility of flow and hemoglobin transients, we analyzed their association with infarction in rat focal brain ischemia. Optical images of flow, oxy-hemoglobin, and deoxy-hemoglobin were continuously acquired with Laser Speckle and Optical Intrinsic Signal imaging for 2 h after photochemically induced distal middle cerebral artery occlusion in Sprague-Dawley rats (n = 10). Imaging was performed through a 6 × 6 mm window centered 3 mm posterior and 4 mm lateral to Bregma. Rats were sacrificed after 24 h, and the brain slices were stained for assessment of infarction. We mapped the infarcted area onto the imaging data and used nine circular regions of interest (ROI) to distinguish infarcted from non-infarcted tissue. Transients propagating through each ROI were characterized with six parameters (negative, positive, and total amplitude; negative and positive slope; duration). Transients were also classified into three morphology types (positive monophasic, biphasic, negative monophasic). Flow transient morphology, positive amplitude, positive slope, and total amplitude were all strongly associated with infarction (p < 0.001). Associations with infarction were also observed for oxy-hemoglobin morphology, oxy-hemoglobin positive amplitude and slope, and deoxy-hemoglobin positive slope and duration (all p < 0.01). These results suggest that flow and hemoglobin transients accompanying SD have value for detecting infarction.


Assuntos
Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , Oxiemoglobinas , Animais , Humanos , Ratos , Isquemia Encefálica/complicações , Circulação Cerebrovascular/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Infarto da Artéria Cerebral Média , Ratos Sprague-Dawley
15.
JTCVS Open ; 16: 801-809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204663

RESUMO

Objectives: Recent research suggests that increased cerebral oxygen use during surgical intervention for neonates with congenital heart disease may play a role in the development of postoperative white matter injury. The objective of this study is to determine whether increased cerebral electrical activity correlates with greater decrease of cerebral oxygen saturation during deep hypothermic circulatory arrest. Methods: Neonates with critical congenital heart disease requiring surgical intervention during the first week of life were studied. All subjects had continuous neuromonitoring with electroencephalography and an optical probe (to quantify cerebral oxygen saturation) during cardiac surgical repair that involved the use of cardiopulmonary bypass and deep hypothermic circulatory arrest. A simple linear regression was used to investigate the association between electroencephalography metrics before the deep hypothermic circulatory arrest period and the change in cerebral oxygen saturation during the deep hypothermic circulatory arrest period. Results: Sixteen neonates had both neuromonitoring modalities attached during surgical repair. Cerebral oxygen saturation data from 5 subjects were excluded due to poor data quality, yielding a total sample of 11 neonates. A simple linear regression model found that the presence of electroencephalography activity at the end of cooling is positively associated with the decrease in cerebral oxygen saturation that occurs during deep hypothermic circulatory arrest (P < .05). Conclusions: Electroencephalography characteristics within 5 minutes before the initiation of deep hypothermic circulatory arrest may be useful in predicting the decrease in cerebral oxygen saturation that occurs during deep hypothermic circulatory arrest. Electroencephalography may be an important tool for guiding cooling and the initiation of circulatory arrest to potentially decrease the prevalence of new white matter injury in neonates with critical congenital heart disease.

16.
Neurophotonics ; 9(Suppl 2): S24001, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36052058

RESUMO

This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.

17.
Nat Biomed Eng ; 6(9): 1017-1030, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970929

RESUMO

Direct assessment of blood oxygenation in the human placenta can provide information about placental function. However, the monitoring of placental oxygenation involves invasive sampling or imaging techniques that are poorly suited for bedside use. Here we show that placental oxygen haemodynamics can be non-invasively probed in real time and up to 4.2 cm below the body surface via concurrent frequency-domain diffuse optical spectroscopy and ultrasound imaging. We developed a multimodal instrument to facilitate the assessment of the properties of the anterior placenta by leveraging image-reconstruction algorithms that integrate ultrasound information about the morphology of tissue layers with optical information on haemodynamics. In a pilot investigation involving placentas with normal function (15 women) or abnormal function (9 women) from pregnancies in the third trimester, we found no significant differences in baseline haemoglobin properties, but statistically significant differences in the haemodynamic responses to maternal hyperoxia. Our findings suggest that the non-invasive monitoring of placental oxygenation may aid the early detection of placenta-related adverse pregnancy outcomes and maternal vascular malperfusion.


Assuntos
Hiperóxia , Placenta , Feminino , Humanos , Hiperóxia/diagnóstico por imagem , Oxigênio , Placenta/irrigação sanguínea , Placenta/diagnóstico por imagem , Placenta/fisiologia , Gravidez , Análise Espectral , Ultrassonografia
18.
Neurophotonics ; 9(3): 035004, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36039170

RESUMO

Significance: The critical closing pressure (CrCP) of cerebral circulation, as measured by diffuse correlation spectroscopy (DCS), is a promising biomarker of intracranial hypertension. However, CrCP techniques using DCS have not been assessed in gold standard experiments. Aim: CrCP is typically calculated by examining the variation of cerebral blood flow (CBF) during the cardiac cycle (with normal sinus rhythm). We compare this typical CrCP measurement with a gold standard obtained during the drops in arterial blood pressure (ABP) caused by rapid ventricular pacing (RVP) in patients undergoing invasive electrophysiologic procedures. Approach: Adults receiving electrophysiology procedures with planned ablation were enrolled for DCS CBF monitoring. CrCP was calculated from CBF and ABP data by three methods: (1) linear extrapolation of data during RVP ( CrCP RVP ; the gold standard); (2) linear extrapolation of data during regular heartbeats ( CrCP Linear ); and (3) fundamental harmonic Fourier filtering of data during regular heartbeats ( CrCP Fourier ). Results: CBF monitoring was performed prior to and during 55 episodes of RVP in five adults. CrCP RVP and CrCP Fourier demonstrated agreement ( R = 0.66 , slope = 1.05 (95%CI, 0.72 to 1.38). Agreement between CrCP RVP and CrCP Linear was worse; CrCP Linear was 8.2 ± 5.9 mmHg higher than CrCP RVP (mean ± SD; p < 0.001 ). Conclusions: Our results suggest that DCS-measured CrCP can be accurately acquired during normal sinus rhythm.

19.
Metabolites ; 12(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36005609

RESUMO

Neonates undergoing cardiac surgery involving aortic arch reconstruction are at an increased risk for hypoxic-ischemic brain injury. Deep hypothermia is utilized to help mitigate this risk when periods of circulatory arrest are needed for surgical repair. Here, we investigate correlations between non-invasive optical neuromonitoring of cerebral hemodynamics, which has recently shown promise for the prediction of postoperative white matter injury in this patient population, and invasive cerebral microdialysis biomarkers. We compared cerebral tissue oxygen saturation (StO2), relative total hemoglobin concentration (rTHC), and relative cerebral blood flow (rCBF) measured by optics against the microdialysis biomarkers of metabolic stress and injury (lactate-pyruvate ratio (LPR) and glycerol) in neonatal swine models of deep hypothermic cardiopulmonary bypass (DHCPB), selective antegrade cerebral perfusion (SACP), and deep hypothermic circulatory arrest (DHCA). All three optical parameters were negatively correlated with LPR and glycerol in DHCA animals. Elevation of LPR was found to precede the elevation of glycerol by 30-60 min. From these data, thresholds for the detection of hypoxic-ischemia-associated cerebral metabolic distress and neurological injury are suggested. In total, this work provides insight into the timing and mechanisms of neurological injury following hypoxic-ischemia and reports a quantitative relationship between hypoxic-ischemia severity and neurological injury that may inform DHCA management.

20.
Resuscitation ; 178: 12-18, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817269

RESUMO

AIM: Cardiac arrest often results in severe neurologic injury. Improving care for these patients is difficult as few noninvasive biomarkers exist that allow physicians to monitor neurologic health. The amount of low-frequency power (LFP, 0.01-0.1 Hz) in cerebral haemodynamics has been used in functional magnetic resonance imaging as a marker of neuronal activity. Our hypothesis was that increased LFP in cerebral blood flow (CBF) would be correlated with improvements in invasive measures of neurologic health. METHODS: We adapted the use of LFP for to monitoring of CBF with diffuse correlation spectroscopy. We asked whether LFP (or other optical biomarkers) correlated with invasive microdialysis biomarkers (lactate-pyruvate ratio - LPR - and glycerol concentration) of neuronal injury in the 4 h after return of spontaneous circulation in a swine model of paediatric cardiac arrest (Sus scrofa domestica, 8-11 kg, 51% female). Associations were tested using a mixed linear effects model. RESULTS: We found that higher LFP was associated with higher LPR and higher glycerol concentration. No other biomarkers were associated with LPR; cerebral haemoglobin concentration, oxygen extraction fraction, and one EEG metric were associated with glycerol concentration. CONCLUSION: Contrary to expectations, higher LFP in CBF was correlated with worse invasive biomarkers. Higher LFP may represent higher neurologic activity, or disruptions in neurovascular coupling. Either effect may be harmful in the acute period after cardiac arrest. Thus, these results suggest our methodology holds promise for development of new, clinically relevant biomarkers than can guide resuscitation and post-resuscitation care. Institutional protocol number: 19-001327.


Assuntos
Glicerol , Parada Cardíaca , Biomarcadores , Circulação Cerebrovascular/fisiologia , Feminino , Parada Cardíaca/complicações , Humanos , Masculino , Ressuscitação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...