Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 28(8): 662-670, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381247

RESUMO

Aerobic glycolysis in cancer cells, also known as the 'Warburg effect', is driven by hyperactivity of lactate dehydrogenase A (LDHA). LDHA is thought to be a substrate-regulated enzyme, but it is unclear whether a dedicated intracellular protein also regulates its activity. Here, we identify the human tumor suppressor folliculin (FLCN) as a binding partner and uncompetitive inhibitor of LDHA. A flexible loop within the amino terminus of FLCN controls movement of the LDHA active-site loop, tightly regulating its enzyme activity and, consequently, metabolic homeostasis in normal cells. Cancer cells that experience the Warburg effect show FLCN dissociation from LDHA. Treatment of these cells with a decapeptide derived from the FLCN loop region causes cell death. Our data suggest that the glycolytic shift of cancer cells is the result of FLCN inactivation or dissociation from LDHA. Together, FLCN-mediated inhibition of LDHA provides a new paradigm for the regulation of glycolysis.


Assuntos
Glicólise/fisiologia , Lactato Desidrogenase 5/antagonistas & inibidores , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Domínio Catalítico/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Lactato Desidrogenase 5/metabolismo , Transdução de Sinais
2.
Oncotarget ; 10(56): 5824-5834, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31645902

RESUMO

The molecular chaperone Heat shock protein 90 (Hsp90) is essential for the folding, stability, and activity of several drivers of oncogenesis. Hsp90 inhibitors are currently under clinical evaluation for cancer treatment, however their efficacy is limited by lack of biomarkers to optimize patient selection. We have recently identified the tumor suppressor tuberous sclerosis complex 1 (Tsc1) as a new co-chaperone of Hsp90 that affects Hsp90 binding to its inhibitors. Highly variable mutations of TSC1 have been previously identified in bladder cancer and correlate with sensitivity to the Hsp90 inhibitors. Here we showed loss of TSC1 leads to hypoacetylation of Hsp90-K407/K419 and subsequent decreased binding to the Hsp90 inhibitor ganetespib. Pharmacologic inhibition of histone deacetylases (HDACs) restores acetylation of Hsp90 and sensitizes Tsc1-mutant bladder cancer cells to ganetespib, resulting in apoptosis. Our findings suggest that TSC1 status may predict response to Hsp90 inhibitors in patients with bladder cancer, and co-targeting HDACs can sensitize tumors with Tsc1 mutations to Hsp90 inhibitors.

3.
Cell Rep ; 28(7): 1894-1906.e6, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412254

RESUMO

The extracellular molecular chaperone heat shock protein 90 (eHSP90) stabilizes protease client the matrix metalloproteinase 2 (MMP2), leading to tumor cell invasion. Although co-chaperones are critical modulators of intracellular HSP90:client function, how the eHSP90:MMP2 complex is regulated remains speculative. Here, we report that the tissue inhibitor of metalloproteinases-2 (TIMP2) is a stress-inducible extracellular co-chaperone that binds to eHSP90, increases eHSP90 binding to ATP, and inhibits its ATPase activity. In addition to disrupting the eHSP90:MMP2 complex and terminally inactivating MMP2, TIMP2 loads the client to eHSP90, keeping the protease in a transient inhibitory state. Secreted activating co-chaperone AHA1 displaces TIMP2 from the complex, providing a "reactivating" mechanism for MMP2. Gene knockout or blocking antibodies targeting TIMP2 and AHA1 released by HT1080 cancer cells modify their gelatinolytic activity. Our data suggest that TIMP2 and AHA1 co-chaperones function as a molecular switch that determines the inhibition and reactivation of the eHSP90 client protein MMP2.


Assuntos
Matriz Extracelular/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Proteólise , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Animais , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Humanos , Metaloproteinase 2 da Matriz/genética , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Inibidor Tecidual de Metaloproteinase-2/genética
4.
Cell Rep ; 26(5): 1344-1356.e5, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699359

RESUMO

The molecular chaperone Hsp90 stabilizes and activates client proteins. Co-chaperones and post-translational modifications tightly regulate Hsp90 function and consequently lead to activation of clients. However, it is unclear whether this process occurs abruptly or gradually in the cellular context. We show that casein kinase-2 phosphorylation of the co-chaperone folliculin-interacting protein 1 (FNIP1) on priming serine-938 and subsequent relay phosphorylation on serine-939, 941, 946, and 948 promotes its gradual interaction with Hsp90. This leads to incremental inhibition of Hsp90 ATPase activity and gradual activation of both kinase and non-kinase clients. We further demonstrate that serine/threonine protein phosphatase 5 (PP5) dephosphorylates FNIP1, allowing the addition of O-GlcNAc (O-linked N-acetylglucosamine) to the priming serine-938. This process antagonizes phosphorylation of FNIP1, preventing its interaction with Hsp90, and consequently promotes FNIP1 lysine-1119 ubiquitination and proteasomal degradation. These findings provide a mechanism for gradual activation of the client proteins through intricate crosstalk of post-translational modifications of the co-chaperone FNIP1.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Processamento de Proteína Pós-Traducional , Caseína Quinase II/metabolismo , Glicosilação , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Fosfosserina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Ubiquitinação
5.
iScience ; 1: 87-96, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30227959

RESUMO

The tissue inhibitor of metalloproteinases 2 (TIMP-2) is a specific endogenous inhibitor of matrix metalloproteinase 2 (MMP-2), which is a key enzyme that degrades the extracellular matrix and promotes tumor cell invasion. Although the TIMP-2:MMP-2 complex controls proteolysis, the signaling mechanism by which the two proteins associate in the extracellular space remains unidentified. Here we report that TIMP-2 is phosphorylated outside the cell by secreted c-Src tyrosine kinase. As a consequence, phosphorylation at Y90 significantly enhances TIMP-2 potency as an MMP-2 inhibitor and weakens the catalytic action of the active enzyme. TIMP-2 phosphorylation also appears to be essential for its interaction with the latent enzyme proMMP-2 in vivo. Absence of the kinase or non-phosphorylatable Y90 abolishes TIMP-2 binding to the latent enzyme, ultimately hampering proMMP-2 activation. Together, TIMP-2 phosphorylation by secreted c-Src represents a critical extracellular regulatory mechanism that controls the proteolytic function of MMP-2.

6.
Methods Mol Biol ; 1709: 321-329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177669

RESUMO

Heat Shock Protein 90 (Hsp90) is a ubiquitous molecular chaperone that comprises about 1-3% of the total cellular protein. Over the last decade, Hsp90 has been detected and studied in the extracellular space (extracellular or eHsp90) of normal and neoplastic cells. Once outside the cell, eHsp90 has been shown to interact with extracellular client proteins and promote their stabilization and function. Cell conditioned media are routinely collected to detect and quantify eHsp90, and determine its interactions with extracellular clients. Finally, targeting specifically the eHsp90 with pharmacologic inhibitors or antibodies that are unable to cross the plasma membrane has been beneficial in inhibiting tumor cell motility and invasion.


Assuntos
Western Blotting/métodos , Espaço Extracelular/metabolismo , Proteínas de Choque Térmico HSP90/análise , Imunoprecipitação/métodos , Células HEK293 , Humanos
7.
Cell Rep ; 21(7): 1883-1895, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141220

RESUMO

The serine/threonine protein phosphatase 5 (PP5) regulates multiple cellular signaling networks. A number of cellular factors, including heat shock protein 90 (Hsp90), promote the activation of PP5. However, it is unclear whether post-translational modifications also influence PP5 phosphatase activity. Here, we show an "on/off switch" mechanism for PP5 regulation. The casein kinase 1δ (CK1δ) phosphorylates T362 in the catalytic domain of PP5, which activates and enhances phosphatase activity independent of Hsp90. Overexpression of the phosphomimetic T362E-PP5 mutant hyper-dephosphorylates substrates such as the co-chaperone Cdc37 and glucocorticoid receptor in cells. Our proteomic approach revealed that the tumor suppressor von Hippel-Lindau protein (VHL) interacts with and ubiquitinates K185/K199-PP5 for proteasomal degradation in a hypoxia- and prolyl-hydroxylation-independent manner. Finally, VHL-deficient clear cell renal cell carcinoma (ccRCC) cell lines and patient tumors exhibit elevated PP5 levels. Downregulation of PP5 causes ccRCC cells to undergo apoptosis, suggesting a prosurvival role for PP5 in kidney cancer.


Assuntos
Apoptose , Carcinoma de Células Renais/metabolismo , Glicoproteínas/metabolismo , Neoplasias Renais/metabolismo , Ubiquitinação , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Glicoproteínas/genética , Humanos , Neoplasias Renais/patologia , Fosforilação , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...