Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 172: 112873, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34428622

RESUMO

First data on polycyclic aromatic hydrocarbons (PAHs) and nitro-aromatic compounds (NACs) in aerosols as well as of PAHs, polychlorinated biphenyls (PCBs) and NACs in bulk and wet atmospheric deposition samples were simultaneously obtained during 6-month-long field campaign at the costal central Adriatic area. Special attention was given to open-fire biomass burning episodes as extreme events common for the overall Mediterranean coastal area in order to gain a better understanding of the atmospheric variabilities and potential sources of trace organic pollutants in coastal environments. Diesel and gasoline combustion related to land and maritime traffic as well as occasional open-fire episodes (forest fires) were found to be the dominant pollution sources of PAHs in PM10 particles. NACs were determined almost exclusively in samples affected by biomass burning episodes. Open-fire episodes had a strong contribution to the overall NACs atmospheric deposition fluxes. Several chlorinated congeners of PCBs were predominantly contributed in deposition samples.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Chemosphere ; 283: 131178, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34153912

RESUMO

Aerosol (PM10), bulk deposition, sea surface microlayer (SML) and underlying water (ULW) samples were collected simultaneously during a field campaign at the middle Adriatic coastal site between February and July 2019, to assess the impact of atmospheric deposition (AD) of biologically relevant trace metals (TM) (Zn, Cu, Co, Ni, Cd and Pb) on the sea surface responses in an oligotrophic coastal region. Anthropogenic emissions from continental Europe, alongside local/regional domestic heating, likely affected the concentrations of Zn, Cd and Pb in aerosols during winter-early spring, while traffic emissions during the tourist season impacted Ni, Co and Cu aerosol concentrations. Additionally, open-fire biomass burning (BB) episodes caused considerable TM concentration increases, while Saharan dust intrusion in spring led to a 10-fold increase in Co concentrations in PM10 samples. These intensive episodes significantly affected the bulk deposition fluxes of TMs, showing that a small number of such extreme events, common to Mediterranean coastal areas, could be responsible for most of the AD. Enrichments and concentrations of total TMs in SML samples collected following BB events indicated that such events, along with high precipitation, influenced TM partitioning in surface water layers. We estimated that AD represents a significant source of TM to the shallow middle Adriatic coastal area, highlighting the need to further explore the atmosphere-sea surface links, to expand our understanding of the biogeochemistry of these important micronutrients and pollutants, including their impact on the aquatic community.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Monitoramento Ambiental , Oligoelementos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...