Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0302376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990806

RESUMO

We applied the patch-seq technique to harvest transcripts from individual microglial cells from cortex, hippocampus and corpus callosum of acute brain slices from adult mice. After recording membrane currents with the patch-clamp technique, the cytoplasm was collected via the pipette and underwent adapted SMART-seq2 preparation with subsequent sequencing. On average, 4138 genes were detected in 113 cells from hippocampus, corpus callosum and cortex, including microglia markers such as Tmem119, P2ry12 and Siglec-H. Comparing our dataset to previously published single cell mRNA sequencing data from FACS-isolated microglia indicated that two clusters of cells were absent in our patch-seq dataset. Pathway analysis of marker genes in FACS-specific clusters revealed association with microglial activation and stress response. This indicates that under normal conditions microglia in situ lack transcripts associated with a stress-response, and that the microglia-isolation procedure by mechanical dissociation and FACS triggers the expression of genes related to activation and stress.


Assuntos
Microglia , Microglia/metabolismo , Animais , Camundongos , Citometria de Fluxo/métodos , Estresse Fisiológico/genética , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Masculino , Hipocampo/metabolismo , Hipocampo/citologia , Análise de Célula Única/métodos
2.
Curr Issues Mol Biol ; 46(2): 1281-1290, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38392199

RESUMO

Heterogeneity of gastric cancer (GC) is the main trigger of the disease's relapse. The aim of this study was to investigate the connections between targeted genes, cancer clinical features, and the effectiveness of FLOT chemotherapy. Twenty-one patients with gastric cancers (GCs) were included in this study. Tumor-targeted sequencing was conducted, and real-time PCR was used to assess the expression of molecular markers in tumors. Seven patients with stabilization had mutations that were related to their response to therapy and were relevant to the tumor phenotype. Two patients had two mutations. The number of patients with TP53 mutations increased in HER2-positive tumor status. PD-L1-positive cancers had mutations in KRAS, TP53, PIK3CA, PTEN, and ERBB, which resulted in an increase in PD-1 expression. TP53 mutation and PTEN mutation are associated with changes in factors associated with neoangiogenesis. In concusion, patients who did not have aggressive growth markers that were verified by molecular features had the best response to treatment, including complete morphologic regression.

3.
Biomimetics (Basel) ; 8(6)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37887619

RESUMO

Polymethylmethacrylate (PMMA) is the most commonly used bone void filler in orthopedic surgery. However, the biocompatibility and radiopacity of PMMA are insufficient for such applications. In addition to insufficient biocompatibility, the microbial infection of medical implants is one of the frequent causes of failure in bone reconstruction. In the present work, the preparation of a novel PMMA-based hydroxyapatite/ZnFe2O4/ZnO composite with heterophase ZnFe2O4/ZnO NPs as an antimicrobial agent was described. ZnFe2O4/ZnO nanoparticles were produced using the electrical explosion of zinc and iron twisted wires in an oxygen-containing atmosphere. This simple, highly productive, and inexpensive nanoparticle fabrication approach could be readily adapted to different applications. From the findings, the presented composite material showed significant antibacterial activity (more than 99% reduction) against P. aeruginosa, S. aureus, and MRSA, and 100% antifungal activity against C. albicans, as a result of the combined use of both ZnO and ZnFe2O4. The composite showed excellent biocompatibility against the sensitive fibroblast cell line 3T3. The more-than-70% cell viability was observed after 1-3 days incubation of the sample. The developed composite material could be a potential material for the fabrication of 3D-printed implants.

4.
Biomimetics (Basel) ; 8(5)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37754195

RESUMO

A promising method for improving the functional properties of calcium-phosphate coatings is the incorporation of various antibacterial additives into their structure. The microbial contamination of a superficial wound is inevitable, even if the rules of asepsis and antisepsis are optimally applied. One of the main problems is that bacteria often become resistant to antibiotics over time. However, this does not apply to certain elements, chemical compounds and drugs with antimicrobial properties. In this study, the fabrication and properties of zinc-containing calcium-phosphate coatings that were formed via micro-arc oxidation from three different electrolyte solutions are investigated. The first electrolyte is based on calcium oxide, the second on hydroxyapatite and the third on calcium acetate. By adding zinc oxide to the three electrolyte solutions, antibacterial properties of the coatings are achieved. Although the same amount of zinc oxide has been added to each electrolyte solution, the zinc concentration in the coatings obtained vary greatly. Furthermore, this study investigates the morphology, structure and chemical composition of the coatings. The antibacterial properties of the zinc-containing coatings were tested toward three strains of bacteria-Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Coatings of calcium acetate and zinc oxide contained the highest amount of zinc and displayed the highest zinc release. Moreover, coatings containing hydroxyapatite and zinc oxide show the highest antibacterial activity toward Pseudomonas aeruginosa, and coatings containing calcium acetate and zinc oxide show the highest antibacterial activities toward Staphylococcus aureus and methicillin-resistant Staphylococcus aureus.

5.
Curr Issues Mol Biol ; 45(9): 7642-7649, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37754265

RESUMO

INTRODUCTION: The landscape of gastric cancer treatment has changed owing to the widespread use of immune checkpoint inhibitors. Autophagy, involved in regulating the immune system, is a potential trigger of immunity in tumors. This study aims to find molecular-based evidence for the effectiveness of FLOT chemotherapy with immune checkpoint inhibitors in gastric cancer patients. MATERIALS AND METHODS: Three patients with advanced gastric cancer received FLOT neoadjuvant chemotherapy with immunotherapy and surgery. IHC was used to determine the PD-L1 status. Real-time PCR was used to analyze expression patterns of transcriptional growth factors, AKT/mTOR signaling components, PD-1, PD-L1, PD-L2 and LC3B. The LC3B content was measured via Western blotting analysis. RESULTS: The combination of FLOT neoadjuvant chemotherapy and immunotherapy was found to be efficient in patients with a PD-L1-positive status. Gastric tumors with a PD-L1-positive status exhibited autophagy activation and decreased PD-1 expression. CONCLUSIONS: FLOT chemotherapy combined with immune checkpoint inhibitors showed high efficacy in gastric cancer patients with a positive PD-L1 status. Autophagy was involved in activating the tumor immunity. Further research is needed to clarify the mechanism of effective anticancer treatment.

6.
Biomimetics (Basel) ; 8(3)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504168

RESUMO

The method of micro-arc oxidation has been utilized to synthesize a protective biocompatible coating for a bioresorbable orthopedic Mg implant. This paper presents the results of comprehensive research of micro-arc coatings based on diatomite-a biogenic material consisting of shells of diatom microalgae. The main focus of this study was the functionalization of diatomite-based micro-arc coatings by incorporating particles of titania (TiO2) into them. Various properties of the resulting coatings were examined and evaluated. XRD analysis revealed the formation of a new magnesium orthosilicate phase-forsterite (Mg2SiO4). It was established that the corrosion current density of the coatings decreased by 1-2 orders of magnitude after the inclusion of TiO2 particles, depending on the coating process voltage. The adhesion strength of the coatings increased following the particle incorporation. The processes of dissolution of both coated and uncoated samples in a sodium chloride solution were studied. The in vitro cell viability was assessed, which showed that the coatings significantly reduced the cytotoxicity of Mg samples.

7.
J Funct Biomater ; 14(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37233351

RESUMO

In the present work, the surface of a biodegradable Mg alloy was modified to create porous diatomite biocoatings using the method of micro-arc oxidation. The coatings were applied at process voltages in the range of 350-500 V. We have studied the influence of the addition of ZrO2 microparticles on the structure and properties of diatomite-based protective coatings for Mg implants. The structure and properties of the resulting coatings were examined using a number of research methods. It was found that the coatings have a porous structure and contain ZrO2 particles. The coatings were mostly characterized by pores less than 1 µm in size. However, as the voltage of the MAO process increases, the number of larger pores (5-10 µm in size) also increases. However, the porosity of the coatings varied insignificantly and amounted to 5 ± 1%. It has been revealed that the incorporation of ZrO2 particles substantially affects the properties of diatomite-based coatings. The adhesive strength of the coatings has increased by approximately 30%, and the corrosion resistance has increased by two orders of magnitude compared to the coatings without zirconia particles.

8.
Pharmaceutics ; 15(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986800

RESUMO

Biocompatible poly(lactide-co-glycolide) scaffolds fabricated via electrospinning are having promising properties as implants for the regeneration of fast-growing tissues, which are able to degrade in the body. The hereby-presented research work investigates the surface modification of these scaffolds in order to improve antibacterial properties of this type of scaffolds, as it can increase their application possibilities in medicine. Therefore, the scaffolds were surface-modified by means of pulsed direct current magnetron co-sputtering of copper and titanium targets in an inert atmosphere of argon. In order to obtain different amounts of copper and titanium in the resulting coatings, three different surface-modified scaffold samples were produced by changing the magnetron sputtering process parameters. The success of the antibacterial properties' improvement was tested with the methicillin-resistant bacterium Staphylococcus aureus. In addition, the resulting cell toxicity of the surface modification by copper and titanium was examined using mouse embryonic and human gingival fibroblasts. As a result, the scaffold samples surface-modified with the highest copper to titanium ratio show the best antibacterial properties and no toxicity against mouse fibroblasts, but have a toxic effect to human gingival fibroblasts. The scaffold samples with the lowest copper to titanium ratio display no antibacterial effect and toxicity. The optimal poly(lactide-co-glycolide) scaffold sample is surface-modified with a medium ratio of copper and titanium that has antibacterial properties and is non-toxic to both cell cultures.

9.
Mol Syst Biol ; 19(2): e11147, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36573354

RESUMO

Tissue dissociation, a crucial step in single-cell sample preparation, can alter the transcriptional state of a sample through the intrinsic cellular stress response. Here we demonstrate a general approach for measuring transcriptional response during sample preparation. In our method, transcripts made during dissociation are labeled for later identification upon sequencing. We found general as well as cell-type-specific dissociation response programs in zebrafish larvae, and we observed sample-to-sample variation in the dissociation response of mouse cardiomyocytes despite well-controlled experimental conditions. Finally, we showed that dissociation of the mouse hippocampus can lead to the artificial activation of microglia. In summary, our approach facilitates experimental optimization of dissociation procedures as well as computational removal of transcriptional perturbation response.


Assuntos
RNA , Transcriptoma , Camundongos , Animais , Peixe-Zebra/genética , Análise de Sequência de RNA/métodos , Microglia , Análise de Célula Única , Perfilação da Expressão Gênica/métodos
10.
Nanomaterials (Basel) ; 12(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364663

RESUMO

The water oxidation of bimetallic Al/Ag nanoparticles has been shown to yield nanoscale structures whose morphology, phase composition and textural characteristics are determined by the synthesis conditions. Flower-like nanoscale structures with silver nanoparticles, with an average size of 17 nm, are formed in water at 60 °C. Under hydrothermal conditions at temperatures of 200 °C and a pressure of 16 MPa, boehmite nanoplatelets with silver nanoparticles, with an average size of 22 nm, are formed. The oxidation of Al/Ag nanoparticles using humid air at 60 °C and 80% relative humidity results in the formation of rod-shaped bayerite nanoparticles and Ag nanoparticles with an average size of 19 nm. The thermal treatment of nanoscale structures obtained at a temperature of 500 °C has been shown to lead to a phase transition into γ-Al2O3, while maintaining the original morphology, and to a decrease in the average size of the silver nanoparticles to 12 nm and their migration to the surface of nanoscale structures. The migration of silver to the nanoparticle surface influences the formation of a double electric layer of particles, and leads to a shift in the pH of the zero-charge point by approximately one, with the nanostructures acquiring pronounced antimicrobial properties.

11.
Curr Issues Mol Biol ; 44(7): 2772-2782, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35877414

RESUMO

Autophagy plays a dual role in oncogenesis processes. On one hand, autophagy enhances the cell resistance to oncogenic factors, and on the other hand, it participates in the tumor progression. The aim of the study was to find the associations between the effectiveness of the FLOT regimen in resectable gastric cancers (GCs) with the key autophagy-related proteins. Materials and Methods: The study included 34 patients with morphologically verified gastric cancer. All patients had FLOT neoadjunvant chemotherapy (NACT) (fluorouracil, leucovorin, oxaliplatin, and docetaxel) followed by gastrectomy. The studied tissue material was the non-transformed and tumor tissues obtained during diagnostic video gastroscopy in patients before the start of the combined treatment and after surgical treatment, frozen after collection. The LC3B, mTOR, and AMPK expression was determined by real-time PCR. The content of the LC3B protein was determined by Western blotting analysis. Results: The mRNA level and the content of the LC3B protein were associated with the tumor stage and the presence of signet ring cells. The AMPK mRNA level was increased in patients with the T4N0-2M0 stage by 37.7 and 7.33 times, which was consequently compared with patients with the T2N0M0 and T3N0-1M0 stages. The opposite changes in the mTOR and AMPK in the GCs before anti-cancer therapy were noted. The tumor size and regional lymph node affections were associated with a decrease in the mTOR mRNA level. A decrease in the mTOR expression was accompanied by an increase in the AMPK expression in the GCs. The mTOR expression was reduced in patients with a cancer spreading; in contrast, AMPK grew with the tumor size. There was an increase in the LC3B expression, which can probably determine the response to therapy. An increase in LC3B mRNA before the start of treatment and the protein content in cancers after NACT with a decrease in therapy effectiveness was recorded. There was an increase in the protein level in patients with partial regression and stabilization by 3.65 and 5.78 times, respectively, when compared with patients with complete tumor regression was noted. Conclusions: The anticancer effectiveness in GCS is down to the LC3B, mTOR, and AMPK expression. These were found to be entire molecular targets affecting the cancer progression and metastasis as well as the NACT effectiveness.

12.
Materials (Basel) ; 15(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806777

RESUMO

Drug delivery systems based on calcium phosphate (CaP) coatings have been recently recognized as beneficial drug delivery systems in complex cases of bone diseases for admission of drugs in the localized area, simultaneously inducing osteoinduction because of the bioavailable Ca and P ions. However, micro-arc oxidation (MAO) deposition of CaP does not allow for the formation of a coating with sufficient interconnected porosity for drug delivery purposes. Here, we report on the method to deposit CaP-based coatings using a new hybrid ultrasound-assisted MAO (UMAOH) method for deposition of coatings for drug delivery that could carry various types of drugs, such as cytostatic, antibacterial, or immunomodulatory compositions. Application of UMAOH resulted in coatings with an Ra roughness equal to 3.5 µm, a thickness of 50-55 µm, and a combination of high values of internal and surface porosity, 39 and 28%, respectively. The coating is represented by the monetite phase that is distributed in the matrix of amorphous CaP. Optimal conditions of coating deposition have been determined and used for drug delivery by impregnation with Vancomycin, 5-Fluorouracil, and Interferon-α-2b. Cytotoxicity and antimicrobial activity of the manufactured drug-carrying coatings have been studied using the three different cell lines and methicillin-resistant S. aureus.

13.
J Neurosci Res ; 100(4): 1105-1122, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35213755

RESUMO

Microglia are the innate immune cells of the central nervous system (CNS). In the adult uncompromised CNS, they have a highly ramified morphology and continuously extend and retract their processes. A subpopulation of microglial cells forms close soma-to-soma contacts with neurons and have been termed satellite microglia, yet the role of such interaction is largely unknown. Here, we analyzed the distribution of satellite microglia in different areas of the CNS of adult male mice applying transgenic- and immunolabeling of neuronal subtypes and microglia followed by three-dimensional imaging analysis. We quantified satellite microglia associated with GABAergic and glutamatergic neurons in the somatosensory cortex, striatum, and thalamus; with dopaminergic and serotonergic neurons in the basal forebrain and raphe nucleus, respectively; and with cerebellar Purkinje cell neurons. Satellite microglia in the retina were assessed qualitatively. Microglia form satellites with all neuronal subtypes studied, whereas a preference for a specific neuron subtype was not found. The occurrence and frequency of satellite microglia is determined by the histo-architectural organization of the brain area and the densities of neuronal somata therein.


Assuntos
Microglia , Neurônios , Animais , Encéfalo , Masculino , Camundongos , Microglia/fisiologia , Neurônios/fisiologia
14.
Environ Sci Pollut Res Int ; 29(1): 1246-1258, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34355309

RESUMO

Hierarchical micro/nanostructured composites, which contain iron and/or its (hydr)oxides, demonstrate high rate and capacity of arsenic adsorption. The main objective of this paper is the use of novel low toxicity AlOOH/AlFe hierarchical micro/nanostructures for arsenic removal. AlOOH/AlFe composite was obtained by simple water oxidation in mild conditions using AlFe bimetallic nanopowder as a precursor. AlFe bimetallic nanopowder was produced by electrical explosive of two twisted wires in argon atmosphere. The productivity of the electrical explosion assembly was 50 g/h, with the consumption of the electrical energy was 75 kW·h/kg. AlFe bimetallic nanoparticles were chemically active and interacted with water at 60 °C. This nanocomposite AlOOH/AlFe is low cost and adsorbs more than 200 mg/g As(V) from its aqueous solution. AlOOH/AlFe composite has flower-like morphology and specific surface area 247.1 m2/g. The phase composition of nanostructures is present AlOOH boehmite and AlFe intermetallic compound. AlOOH/AlFe composite was not previously used for this. The flower-shape AlOOH morphology not only facilitated deliverability, but increased the As(V) sorption capacity by up to 200 mg/g. The adsorption kinetics has been found to be described by a pseudo-second-order equation of Lagergren and Weber-Morris models while the experimental adsorption isotherm is closest to the Freundlich model. This indicates the energy heterogeneity of the adsorbent surface and multilayer adsorption. The use of non-toxic nanostructures opens up new options to treat water affected by arsenic pollution.


Assuntos
Arsênio , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Hidróxido de Alumínio , Óxido de Alumínio , Arsênio/análise , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
15.
Materials (Basel) ; 14(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34772129

RESUMO

Electrical explosion of aluminum wires has been shown to be a versatile method for the preparation of bimodal nano/micro powders. The energy input into the wire has been found to determine the relative content of fine and coarse particles in bimodal aluminum powders. The use of aluminum bimodal powders has been shown to be promising for the development of high flowability feedstocks for metal injection molding and material extrusion additive manufacturing.

16.
Curr Pharm Des ; 27(21): 2436-2444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33222664

RESUMO

Gastric cancer is the second most common cause of cancer-related deaths in the world. The surgical management of the tumor is the best therapeutic option for gastric cancer patients. A combination of a heterogeneous distribution of genetic and environmental factors appears to be required to explain patients' poor prognosis. A search for targeted and molecular-based approaches is affected by the optimal gastric cancer drug management. The modern multidisciplinary approach to treating the pathology used worldwide prolongs the overall patient survival and decreases the rate of recurrence. An understanding of the mechanisms that underlie therapies will provide new insights into gastric cancer treatment. The improvement in medicine will probably be associated with a study of tumor biology, followed by a personalized and molecular-based approach development in anticancer drugs administration. The modern perspective in gastric cancer detection and treatment is the application of nanoparticles. Nanoparticles affecting the intensity of biological processes in cancer cells can be used to treat cancers to increase the effectiveness of anti-tumor therapy. Their cytotoxicity involves a wide range of pathological events. Their targets are the extracellular matrix degradation, epithelial-mesenchymal transition, tumor angiogenesis, tumor microenvironment modulation. These are accompanied by lipid peroxidation, apoptosis, and autophagic flux. Preliminary studies on the efficacy of the use of nanoparticles in cultured gastric cancers open new opportunities for anti-tumor treatment to overcome the toxicity of therapeutic agents and decrease the rate of resistance to anticancer drugs and therapies.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias Gástricas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Humanos , Recidiva Local de Neoplasia , Neoplasias Gástricas/tratamento farmacológico , Microambiente Tumoral
17.
Am J Transl Res ; 12(10): 6351-6365, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194035

RESUMO

Microglia-mediated neuroinflammation is one of the hallmark pathological features following traumatic brain injury (TBI) that contributes to aggravated brain damage and cognitive deficits. These pathologies require novel effective treatments to improve prognosis. Trametinib, a mitogen-activated protein kinase inhibitor approved by the Food and Drug Administration in treating various malignant tumors, has been shown to exert anti-inflammatory effects. The present study demonstrated that TBI mice treated with trametinib exhibited improved cognitive function. Trametinib treatment rescued oligodendrocytes and decreased infiltrating microglial density in the TBI area. Furthermore, this study revealed that ameliorated lipopolysaccharides (LPS) induced inflammatory reaction in microglial cells. Besides, trametinib attenuated inflammation factors expression during the early stages of TBI. In addition, trametinib inhibited LPS-induced microglial chemotactic activity. In conclusion, the results indicate that trametinib efficiently suppresses microglia-induced neuroinflammation and improves cognitive function of TBI mice, providing a potential therapy strategy for TBI patients.

18.
ACS Omega ; 5(32): 19928-19937, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32832747

RESUMO

Enhanced activity in low-temperature water-gas shift (LT-WGS) reaction of some ceramometal catalysts compared to conventional Cu-Zn-Al oxide catalyst was demonstrated. Porous ceramometals were synthesized from powdered CuAl alloys prepared by mechanical alloying with the addition of either CuAlexp powders produced by current spark explosion of Cu+Al wires or CuZnAl oxide obtained by coprecipitation. Their structural, microstructural, and textural characteristics were examined by means of X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectrometry, NMR, and adsorption methods, and catalytic properties were studied in the LT-WGS reaction. CuAlO/CuAl ceramometals were found to have mostly the egg-shell microstructure with the metallic cores (Al x Cu1-x , Al2Cu, and Al4Cu9) and the oxide shell containing copper oxides and/or mixed oxides of copper and aluminum and, at same time, CuAlO/CuAl ceramometal with incorporated additives was found to create a more complicated microstructure. A large amount of X-ray amorphous oxides of copper and aluminum is typical for all composites. CuAl ceramometal was shown to be more active than the CuZnAl oxide catalyst in spite of a much lower specific surface area. The CuAl+CuZnAl catalyst consisting of prismatic granules showed a higher activity in comparison with CuZnAl oxide consisting of cylindrical granules. The activity of the composite granulated catalyst referred to its unit weight was more than 6-fold higher as compared to the oxide catalyst, while the activity per the surface area was found to be more than an order of magnitude higher due to much higher specific activity of small fraction and additively much lower diffusion limitation of granules.

19.
Materials (Basel) ; 13(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326091

RESUMO

A comparative analysis of the structure, properties and the corrosion behavior of the micro-arc coatings based on Sr-substituted hydroxyapatite (Sr-HA) and Sr-substituted tricalcium phosphate (Sr-TCP) deposited on Mg0.8Ca alloy substrates was performed. The current density during the formation of the Sr-HA coatings was higher than that for the Sr-TCP coatings. As a result, the Sr-HA coatings were thicker and had a greater surface roughness Ra than the Sr-TCP coatings. In addition, pore sizes of the Sr-HA were almost two times larger. The ratio (Ca + Sr + Mg)/P were equal 1.64 and 1.47 for Sr-HA and Sr-TCP coatings, respectively. Thus, it can be assumed that the composition of Sr-HA and Sr-TCP coatings was predominantly presented by (Sr,Mg)-substituted hydroxyapatite and (Sr,Mg)-substituted tricalcium phosphate. However, the average content of Sr was approximately the same for both types of the coatings and was equal to 1.8 at.%. The Sr-HA coatings were less soluble and had higher corrosion resistance than the Sr-TCP coatings. Cytotoxic tests in vitro demonstrated a higher cell viability after cultivation with extracts of the Sr-HA coatings.

20.
Recent Pat Nanotechnol ; 14(2): 92-101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31838995

RESUMO

Recent advances in nanotechnology make it possible to create nanomaterials based on γ-alumina with novel hierarchical structure and physicochemical properties. Hierarchical γ-alumina can be synthesized using chemical or physical methods. The nanostructures based on γ-alumina exhibit unique properties, which are utilized in the design of efficient applications. These superior properties are often due to their hierarchical organizations from the nanosize scale to the macroscopic level. The present review is devoted to the contemporary state of the studies on the methods to produce hierarchical γ-alumina. We tried to summarize herein the literature data on the methods of synthesis of hierarchical γ-AlOOH and γ-Al2O3 with controlled morphology and the application of these methods for the synthesis of hierarchical γ-AlOOH and γ-Al2O3 nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...