Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13151-13162, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687869

RESUMO

The nanoscopic layer of water that directly hydrates biological membranes plays a critical role in maintaining the cell structure, regulating biochemical processes, and managing intermolecular interactions at the membrane interface. Therefore, comprehending the membrane structure, including its hydration, is essential for understanding the chemistry of life. While cholesterol is a fundamental lipid molecule in mammalian cells, influencing both the structure and dynamics of cell membranes, its impact on the structure of interfacial water has remained unknown. We used surface-specific vibrational sum-frequency generation spectroscopy to study the effect of cholesterol on the structure and hydration of monolayers of the lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and egg sphingomyelin (SM). We found that for the unsaturated lipid DOPC, cholesterol intercalates in the membrane without significantly changing the orientation of the lipid tails and the orientation of the water molecules hydrating the headgroups of DOPC. In contrast, for the saturated lipids DPPC and SM, the addition of cholesterol leads to clearly enhanced packing and ordering of the hydrophobic tails. It is also observed that the orientation of the water hydrating the lipid headgroups is enhanced upon the addition of cholesterol. These results are important because the orientation of interfacial water molecules influences the cell membranes' dipole potential and the strength and specificity of interactions between cell membranes and peripheral proteins and other biomolecules. The lipid nature-dependent role of cholesterol in altering the arrangement of interfacial water molecules offers a fresh perspective on domain-selective cellular processes, such as protein binding.


Assuntos
Membrana Celular , Colesterol , Água , Colesterol/química , Água/química , Membrana Celular/química , Membrana Celular/metabolismo , Fosfatidilcolinas/química , Esfingomielinas/química , 1,2-Dipalmitoilfosfatidilcolina/química
2.
J Phys Chem Lett ; 15(7): 2075-2081, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38358315

RESUMO

Aqueous glycine plays many different roles in living systems, from being a building block for proteins to being a neurotransmitter. To better understand its fundamental behavior, we study glycine's orientational behavior near model aqueous interfaces, in the absence and presence of electric fields and biorelevant ions. To this purpose, we use a surface-specific technique called heterodyne-detected vibrational sum-frequency generation spectroscopy (HD-VSFG). Using HD-VSFG, we directly probe the symmetric and antisymmetric stretching vibrations of the carboxylate group of zwitterionic glycine. From their relative amplitudes, we infer the zwitterion's orientation near surfactant-covered interfaces and find that it is governed by both electrostatic and surfactant-specific interactions. By introducing additional ions, we observe that the net orientation is altered by the enhanced ionic strength, indicating a change in the balance of the electrostatic and surfactant-specific interactions.

3.
J Phys Chem Lett ; 15(6): 1596-1602, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306467

RESUMO

We employed heterodyne-detected vibrational sum-frequency generation (HD-VSFG) spectroscopy to obtain a molecular-level understanding of the interaction between the anionic surfactant sodium dodecyl ammonium sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). We observed that these surfactants show a strong cooperative effect on their adsorption to the water-air interface. Even at bulk concentrations 1000 times lower than the critical micelle concentrations of SDS and DTAB, a nearly complete surface surfactant layer is observed when both surfactants are present. This strong enhancement of the surface concentrations of DS- and DTA+ can be quantitatively explained from the favorable Coulomb interaction of the oppositely charged headgroups of DS- and DTA+ and the electrostatic interactions with their counterions. The HD-VSFG results are complemented by a modified Langmuir adsorption model in which we include the free energy associated with the electrostatic interactions of the surfactant ions and their counterions.

4.
J Phys Chem Lett ; 14(41): 9285-9290, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37815274

RESUMO

We study the effect of sodium chloride (NaCl) on the properties of the interface of water and the surfactant dodecyl sulfate (DS-) using heterodyne-detected vibrational sum-frequency generation spectroscopy. We find that the signal of the O-H stretch vibrations of oriented water molecules at the interface is highly nonlinearly dependent on the NaCl concentration. This nonlinear dependence is explained by a combination of screening of the electric field of surface-bound DS- ions pointing into the bulk and screening of the Coulomb repulsion between the headgroups of the DS- ions in the surface plane. The latter effect strongly increases the oriented water signal within a limited NaCl concentration range of 10-100 mM, indicating a two-dimensional hydrophobic collapse of the surfactant layer. The occurrence of collapse is supported by model calculations of the surface potential and surface surfactant density.

5.
J Phys Chem B ; 127(20): 4544-4553, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-36917504

RESUMO

The carboxylate anion group plays an important role in many (bio)chemical systems and polymeric materials. In this work, we study the orientation of carboxylate anions with various aliphatic and aromatic substituents at the water-air interface by probing the carboxylate stretch vibrations with heterodyne-detected vibrational sum-frequency generation spectroscopy in different polarization configurations. We find that carboxylate groups with small aliphatic substituents show a large tilt angle with respect to the surface normal and that this angle decreases with increasing size of the substituent. We further use the information about the orientation of the carboxylate group to determine the hyperpolarizability components of this group.

6.
J Am Chem Soc ; 145(12): 6682-6690, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36940392

RESUMO

Proton-transfer reactions in water are essential to chemistry and biology. Earlier studies reported on aqueous proton-transfer mechanisms by observing light-triggered reactions of strong (photo)acids and weak bases. Similar studies on strong (photo)base-weak acid reactions would also be of interest because earlier theoretical works found evidence for mechanistic differences between aqueous H+ and OH- transfer. In this work, we study the reaction of actinoquinol, a water-soluble strong photobase, with the water solvent and the weak acid succinimide. We find that in aqueous solutions containing succinimide, the proton-transfer reaction proceeds via two parallel and competing reaction channels. In the first channel, actinoquinol extracts a proton from water, after which the newly generated hydroxide ion is scavenged by succinimide. In the second channel, succinimide forms a hydrogen-bonded complex with actinoquinol and the proton is transferred directly. Interestingly, we do not observe proton conduction in water-separated actinoquinol-succinimide complexes, which makes the newly studied strong base-weak acid reaction essentially different from previously studied strong acid-weak base reactions.

7.
J Phys Chem Lett ; 13(49): 11391-11397, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455883

RESUMO

Interfacial vibrational footprints of the binary mixture of sodium dodecyl sulfate (SDS) and hexaethylene glycol monododecyl ether (C12E6) were probed using heterodyne detected vibrational sum frequency generation (HDVSFG). Our results show that in the presence of C12E6 at CMC (70 µM) the effect of SDS on the orientation of interfacial water molecules is enhanced 10 times compared to just pure surfactants. The experimental results contest the traditional Langmuir adsorption model predictions. This is also evidenced by our molecular dynamics simulations that show a remarkable restructuring and enhanced orientation of the interfacial water molecules upon DS- adsorption to the C12E6 surface. The simulations show that the adsorption free energy of DS- ions to a water surface covered with C12E6 is an enthalpy-driven process and more attractive by ∼10 kBT compared to the adsorption energy of DS- to the surface of pure water.

8.
J Phys Chem Lett ; 13(42): 9793-9800, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36227233

RESUMO

UiO-66 is a benchmark metal-organic framework that holds great promise for the design of new functional materials. In this work, we perform two-dimensional infrared measurements on polycrystalline membranes of UiO-66 grown on c-sapphire substrates. We study the symmetric and antisymmetric stretch vibrations of the carboxylate groups of the terephthalate linker ions and find that these vibrations show a rapid energy exchange and a collective vibrational relaxation with a time constant of 1.3 ps. We also find that the symmetric vibration of the carboxylate group is strongly coupled to a vibration of the aromatic ring of the terephthalate ion. We observe that the antisymmetric carboxylate vibrations of different terephthalate linkers show rapid resonant (Förster) energy transfer with a time constant of ∼1 ps.

9.
Phys Chem Chem Phys ; 24(17): 10134-10139, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416809

RESUMO

We study the properties of formate (HCOO-) and acetate (CH3COO-) ions at the surface of water using heterodyne-detected vibrational sum-frequency generation (HD-VSFG) spectroscopy. For both ions we observe a response of the symmetric (νs) and antisymmetric (νas) vibrations of the carboxylate group. The spectra further show that for both formate and acetate the carboxylate group is oriented toward the bulk, with a higher degree of orientation for acetate than for formate. We found that increasing the formate and acetate bulk concentrations up to 4.5 m does not change the orientation of the formate and acetate ions at the surface and does not lead to saturation of the surface density of ions.


Assuntos
Ácidos Carboxílicos , Água , Formiatos , Íons/química , Análise Espectral , Água/química
10.
Phys Chem Chem Phys ; 24(11): 7164, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35260872

RESUMO

Correction for 'The molecular structure of the surface of water-ethanol mixtures' by Johannes Kirschner et al., Phys. Chem. Chem. Phys., 2021, 23, 11568-11578, DOI: 10.1039/D0CP06387H.

11.
J Chem Phys ; 156(9): 094501, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259905

RESUMO

We study the vibrational population relaxation and mutual interaction of the symmetric stretch (νs) and antisymmetric stretch (νas) vibrations of the carboxylate anion groups of acetate and terephthalate ions in aqueous solution by femtosecond two-dimensional infrared spectroscopy. By selectively exciting and probing the νs and νas vibrations, we find that the interaction of the two vibrations involves both the anharmonic coupling of the vibrations and energy exchange between the excited states of the vibrations. We find that both the vibrational population relaxation and the energy exchange are faster for terephthalate than for acetate.

12.
J Phys Chem Lett ; 13(2): 634-641, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35020401

RESUMO

We study the molecular-scale structure of the surface of Reline, a DES made from urea and choline chloride, using heterodyne-detected vibrational sum frequency generation (HD-VSFG). Reline absorbs water when exposed to the ambient atmosphere, and following structure-specific changes at the Reline/air interface is crucial and difficult. For Reline (dry, 0 wt %, w/w, water) we observe vibrational signatures of both urea and choline ions at the surface. Upon increase of the water content, there is a gradual depletion of urea from the surface, an enhanced alignment, and an enrichment of the surface with choline cations, indicating surface speciation of ChCl. Above 40% w/w water content, choline cations abruptly deplete from the surface, as evidenced by the decrease of the vibrational signal of the -CH2- groups of choline and the rapid rise of a water signal. Above 60% w/w water content, the surface spectrum of aqueous Reline becomes indistinguishable from that of neat water.

13.
J Phys Chem B ; 126(1): 270-277, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34962792

RESUMO

We study the molecular properties of aqueous acetic acid and formic acid solutions with heterodyne-detected vibrational sum-frequency generation spectroscopy (HD-VSFG). For acid concentrations up to ∼5 M, we observe a strong increase of the responses of the acid hydroxyl and carbonyl stretch vibrations with increasing acid concentration due to an increase of the surface coverage by the acid molecules. At acid concentrations >5 M we observe first a saturation of these responses and then a decrease. For pure carboxylic acids we even observe a change of sign of the Im[χ(2)] response of the carbonyl vibration. The decrease of the response of the hydroxyl vibration and the decrease and sign change of the response of the carbonyl vibration indicate the formation of cyclic dimers, which only show a quadrupolar bulk response in the HD-VSFG spectrum because of their antiparallel conformation. We also find evidence for the presence of a quadrupolar response of the CH vibrations of the acid molecules.


Assuntos
Ácidos Carboxílicos , Vibração , Conformação Molecular , Análise Espectral , Água
14.
Phys Chem Chem Phys ; 23(47): 27024-27030, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34846395

RESUMO

We study the molecular-scale properties of colloidal water-oil emulsions consisting of 120-290 nm oil droplets embedded in water. This type of emulsion can be prepared with low concentrations of surfactants and is usually kinetically stable. Even though colloidal water-oil emulsions are used ubiquitously, their molecular properties are still poorly understood. Here we study the orientational dynamics of water molecules in these emulsions using polarization resolved pump-probe infrared spectroscopy, for varying surfactant concentrations, droplet sizes, and temperatures. We find that the majority of the water molecules reorients with the same time constant as in bulk water, while a small fraction of the water molecules reorients on a much longer time scale. These slowly reorienting water molecules are interacting with the surface of the oil droplets. The fraction of slowly orienting water molecules is proportional to the oil volume fraction, and shows a negligible dependence on the average droplet size. This finding indicates that the total surface area of the oil droplets is quite independent of the average droplet size, which indicates that the larger oil droplets are quite corrugated, showing large protrusions into the water phase.

15.
J Phys Chem Lett ; 12(44): 10823-10828, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726406

RESUMO

Dissolving urea into water induces special solvation properties that play a crucial role in many biological processes. Here we probe the properties of urea molecules at charged aqueous interfaces using heterodyne-detected vibrational sum-frequency generation (HD-VSFG) spectroscopy. We find that at the neat water/air interface urea molecules do not yield a significant sum-frequency generation signal. However, upon the addition of ionic surfactants, we observe two vibrational bands at 1660 and 1590 cm-1 in the HD-VSFG spectrum, assigned to mixed bands of the C═O stretch and NH2 bend vibrations of urea. The orientation of the urea molecules depends on the sign of the charge localized at surface and closely follows the orientation of the neighboring water molecules. We demonstrate that urea is an excellent probe of the local electric field at aqueous interfaces.

16.
J Phys Chem B ; 125(43): 11980-11986, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34672577

RESUMO

We observe that hydrated hydroxide ions introduce an additional relaxation channel for the vibrational relaxation of the OD vibrations of HDO molecules in aqueous NaOH solutions. This additional relaxation path involves resonant (Förster) vibrational energy transfer from the excited OD vibration to OH stretch vibrations of hydrated OH- complexes. This energy transfer constitutes an efficient mechanism for dissipation of the OD vibrational energy, as the accepting OH stretch vibrations show an extremely rapid subsequent relaxation with a time constant of <200 fs. We find that the Förster energy transfer is characterized by a Förster radius of 2.8 ± 0.2 Å.


Assuntos
Vibração , Água , Transferência de Energia
17.
Macromolecules ; 54(18): 8655-8663, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34602653

RESUMO

Hyaluronan is a biopolymer that is essential for many biological processes in the human body, like the regulation of tissue lubrication and inflammatory responses. Here, we study the behavior of hyaluronan at aqueous surfaces using heterodyne-detected vibrational sum-frequency generation spectroscopy (HD-VSFG). Low-molecular-weight hyaluronan (∼150 kDa) gradually covers the water-air interface within hours, leading to a negatively charged surface and a reorientation of interfacial water molecules. The rate of surface accumulation strongly increases when the bulk concentration of low-molecular-weight hyaluronan is increased. In contrast, high-molecular-weight hyaluronan (>1 MDa) cannot be detected at the surface, even hours after the addition of the polymer to the aqueous solution. The strong dependence on the polymer molecular weight can be explained by entanglements of the hyaluronan polymers. We also find that for low-molecular-weight hyaluronan the migration kinetics of hyaluronan in aqueous media shows an anomalous dependence on the pH of the solution, which can be explained from the interplay of hydrogen bonding and electrostatic interactions of hyaluronan polymers.

18.
J Am Chem Soc ; 143(37): 15103-15112, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498857

RESUMO

We study the properties of the interface of water and the surfactant hexaethylene glycol monododecyl ether (C12E6) with a combination of heterodyne-detected vibrational sum frequency generation (HD-VSFG), Kelvin-probe measurements, and molecular dynamics (MD) simulations. We observe that the addition of the hydrogen-bonding surfactant C12E6, close to the critical micelle concentration (CMC), induces a drastic enhancement in the hydrogen bond strength of the water molecules close to the interface, as well as a flip in their net orientation. The mutual orientation of the water and C12E6 molecules leads to the emergence of a broad (∼3 nm) interface with a large electric field of ∼1 V/nm, as evidenced by the Kelvin-probe measurements and MD simulations. Our findings may open the door for the design of novel electric-field-tuned catalytic and light-harvesting systems anchored at the water-surfactant-air interface.

19.
J Phys Chem B ; 125(29): 8219-8224, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34279949

RESUMO

Polyisocyanotripeptides (TriPIC) are biomimetic polymers which consist of a ß-helical backbone stabilized by hydrogen bonds between amide groups. Their oligoethylene glycol side chains give aqueous TriPIC solutions a thermoresponsive behavior: at 50 °C the solution becomes a hydrogel. In this paper we study the molecular structure and water dynamics of TriPIC aqueous solutions while undergoing gelation using FT-IR spectroscopy and polarization-resolved femtosecond infrared spectroscopy (fs-IR). We find evidence that the oligoethylene glycol side chains trap part of the water molecules upon gel formation, and we propose that the interaction between the oligoethylene glycol side chains and water plays an essential role in the bundling of the polymers and thus in the formation of a hydrogel.


Assuntos
Hidrogéis , Água , Ligação de Hidrogênio , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
20.
Biomacromolecules ; 22(6): 2595-2603, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33957041

RESUMO

Antifreeze glycoproteins (AFGPs) are able to bind to ice, halt its growth, and are the most potent inhibitors of ice recrystallization known. The structural basis for AFGP's unique properties remains largely elusive. Here we determined the antifreeze activities of AFGP variants that we constructed by chemically modifying the hydroxyl groups of the disaccharide of natural AFGPs. Using nuclear magnetic resonance, two-dimensional infrared spectroscopy, and circular dichroism, the expected modifications were confirmed as well as their effect on AFGPs solution structure. We find that the presence of all the hydroxyls on the disaccharides is a requirement for the native AFGP hysteresis as well as the maximal inhibition of ice recrystallization. The saccharide hydroxyls are apparently as important as the acetyl group on the galactosamine, the α-linkage between the disaccharide and threonine, and the methyl groups on the threonine and alanine. We conclude that the use of hydrogen-bonding through the hydroxyl groups of the disaccharide and hydrophobic interactions through the polypeptide backbone are equally important in promoting the antifreeze activities observed in the native AFGPs. These important criteria should be considered when designing synthetic mimics.


Assuntos
Proteínas Anticongelantes , Dissacarídeos , Glicoproteínas , Ligação de Hidrogênio , Gelo , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...