Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 79(20): 5342-5354, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31481501

RESUMO

Obese women have higher risk of bearing breast tumors that are highly aggressive and resistant to therapies. Tumor-promoting effects of obesity occur locally via adipose inflammation and related alterations to the extracellular matrix (ECM) as well as systemically via circulating metabolic mediators (e.g., free fatty acids, FFA) associated with excess adiposity and implicated in toll-like receptor-mediated activation of macrophages-key cellular players in obesity-related cancer progression. Although the contribution of macrophages to proneoplastic effects of obesity is well documented, the role of ECM components and their enzymatic degradation is less appreciated. We show that heparanase, the sole mammalian endoglucuronidase that cleaves heparan sulfate in ECM, is preferentially expressed in clinical/experimental obesity-associated breast tumors. Heparanase deficiency abolished obesity-accelerated tumor progression in vivo. Heparanase orchestrated a complex molecular program that occurred concurrently in adipose and tumor tissue and sustained the cancer-promoting action of obesity. Heparanase was required for adipose tissue macrophages to produce inflammatory mediators responsible for local induction of aromatase, a rate-limiting enzyme in estrogen biosynthesis. Estrogen upregulated heparanase in hormone-responsive breast tumors. In subsequent stages, elevated levels of heparanase induced acquisition of procancerous phenotype by tumor-associated macrophages, resulting in activation of tumor-promoting signaling and acceleration of breast tumor growth under obese conditions. As techniques to screen for heparanase expression in tumors become available, these findings provide rational and a mechanistic basis for designing antiheparanase approaches to uncouple obesity and breast cancer in a rapidly growing population of obese patients. SIGNIFICANCE: This study reveals the role of heparanase in promoting obesity-associated breast cancer and provides a mechanistically informed approach to uncouple obesity and breast cancer in a rapidly growing population of obese patients.


Assuntos
Neoplasias da Mama/enzimologia , Carcinoma/enzimologia , Glucuronidase/fisiologia , Obesidade/complicações , Tecido Adiposo/metabolismo , Animais , Aromatase/biossíntese , Aromatase/genética , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Carcinoma/etiologia , Carcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Estrogênios/fisiologia , Feminino , Glucuronidase/deficiência , Glucuronidase/genética , Humanos , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Hormônio-Dependentes/enzimologia , Neoplasias Hormônio-Dependentes/etiologia , Neoplasias Hormônio-Dependentes/patologia , Neoplasias Pancreáticas/patologia
2.
Kidney Int ; 93(3): 626-642, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29276101

RESUMO

A key feature of glomerular diseases such as crescentic glomerulonephritis and focal segmental glomerulosclerosis is the activation, migration and proliferation of parietal epithelial cells. CD44-positive activated parietal epithelial cells have been identified in proliferative cellular lesions in glomerular disease. However, it remains unknown whether CD44-positive parietal epithelial cells contribute to the pathogenesis of scarring glomerular diseases. Here, we evaluated this in experimental crescentic glomerulonephritis and the transgenic anti-Thy1.1 model for collapsing focal segmental glomerulosclerosis in CD44-deficient (cd44-/-) and wild type mice. For both models albuminuria was significantly lower in cd44-/- compared to wild type mice. The number of glomerular Ki67-positive proliferating cells was significantly reduced in cd44-/- compared to wild type mice, which was associated with a reduced number of glomerular lesions in crescentic glomerulonephritis. In collapsing focal segmental glomerulosclerosis, the extracapillary proliferative cellular lesions were smaller in cd44-/- mice, but the number of glomerular lesions was not different compared to wild type mice. For crescentic glomerulonephritis the influx of granulocytes and macrophages into the glomerulus was similar. In vitro, the growth of CD44-deficient murine parietal epithelial cells was reduced compared to wild type parietal epithelial cells, and human parietal epithelial cell migration could be inhibited using antibodies directed against CD44. Thus, CD44-positive proliferating glomerular cells, most likely parietal epithelial cells, are essential in the pathogenesis of scarring glomerular disease.


Assuntos
Doença Antimembrana Basal Glomerular/imunologia , Células Epiteliais/imunologia , Glomerulosclerose Segmentar e Focal/imunologia , Receptores de Hialuronatos/imunologia , Glomérulos Renais/imunologia , Albuminúria/genética , Albuminúria/imunologia , Albuminúria/metabolismo , Animais , Doença Antimembrana Basal Glomerular/genética , Doença Antimembrana Basal Glomerular/metabolismo , Doença Antimembrana Basal Glomerular/patologia , Autoanticorpos/imunologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas da Matriz Extracelular/metabolismo , Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Granulócitos/imunologia , Granulócitos/metabolismo , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Transdução de Sinais , Antígenos Thy-1/genética , Antígenos Thy-1/imunologia , Antígenos Thy-1/metabolismo
3.
Am J Pathol ; 176(5): 2188-97, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20348240

RESUMO

The tetraspanin protein CD37 is a leukocyte-specific transmembrane protein that is highly expressed on B cells. CD37-deficient (CD37(-/-)) mice exhibit a 15-fold increased level of immunoglobulin A (IgA) in serum and elevated numbers of IgA+ plasma cells in lymphoid organs. Here, we report that CD37(-/-) mice spontaneously develop renal pathology with characteristics of human IgA nephropathy. In young naïve CD37(-/-) mice, mild IgA deposition in glomeruli was observed. However, CD37(-/-) mice developed high titers of IgA immune complexes in serum during aging, which was associated with increased glomerular IgA deposition. Severe mesangial proliferation, fibrosis, and hyalinosis were apparent in aged CD37(-/-) mice, whereas albuminuria was mild. To further evaluate the role of CD37 in glomerular disease, we induced anti-glomerular basement membrane (GBM) nephritis in mice. CD37(-/-) mice developed higher IgA serum levels and glomerular deposits of anti-GBM IgA compared with wild-type mice. Importantly, glomerular macrophage and neutrophil influx was significantly higher in CD37(-/-) mice during both the heterologous and autologous phase of anti-GBM nephritis. Taken together, tetraspanin CD37 controls the formation of IgA-containing immune complexes and glomerular IgA deposition, which induces influx of inflammatory myeloid cells. Therefore, CD37 may protect against the development of IgA nephropathy.


Assuntos
Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Glomerulonefrite por IGA/metabolismo , Glicoproteínas/metabolismo , Imunoglobulina A/metabolismo , Glomérulos Renais/metabolismo , Rim/patologia , Animais , Autoanticorpos/química , Membrana Celular/metabolismo , Feminino , Sistema Imunitário , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tetraspaninas
4.
Nephrol Dial Transplant ; 25(2): 478-84, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19755471

RESUMO

BACKGROUND: alpha-Dystroglycan (alpha-DG) is a negatively charged glycoprotein that covers the surface of podocytes. A decreased glomerular expression of alpha-DG has been described in minimal change nephropathy (MCN), but not in focal segmental glomerulosclerosis (FSGS). This was suggested as a tool to distinguish these diseases. Sialic acid is a negatively charged carbohydrate extensively present on both alpha-DG and podocalyxin, which is also expressed on podocytes. Intrarenal perfusion with bacterial sialidase leads to foot process effacement and proteinuria. This is the first study on the expression of endogenous glomerular sialidase; furthermore, the expression of dystroglycan was re-evaluated. METHODS: The expression of alpha-DG and sialidase was investigated by immunofluorescence in kidney biopsies of patients with MCN (n = 5), FSGS (n = 15), proliferative lupus nephritis (LN, n = 9), membranous glomerulopathy (MG, n = 10) and normal human kidneys (NHK, n = 4). The urinary sialic acid concentration was measured using a newly developed LC-tandem mass spectrometry method. RESULTS: A 3-fold increased glomerular expression of sialidase was found in MG, accompanied with an increased urinary sialic acid concentration in two MG patients. However, we did not observe major changes in the expression of alpha-DG in patients with the above-mentioned glomerular diseases compared to NHK, also not between MCN and FSGS. CONCLUSIONS: Endogenous glomerular sialidase expression is increased in MG, which might represent a novel mechanism for the loss of negative charge in the glomerular capillary filter. The expression of dystroglycan cannot be used as a diagnostic tool to differentiate between glomerular diseases.


Assuntos
Distroglicanas/biossíntese , Glomerulonefrite Membranosa/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Nefrite Lúpica/metabolismo , Nefrose Lipoide/metabolismo , Neuraminidase/biossíntese , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
PLoS One ; 4(6): e5979, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19543532

RESUMO

BACKGROUND: Alpha-dystroglycan is a negatively charged glycoprotein that covers the apical and basolateral membrane of the podocyte. Its transmembrane binding to the cytoskeleton is regulated via tyrosine phosphorylation (pY892) of beta-dystroglycan. At the basolateral side alpha-dystroglycan binds the glomerular basement membrane. At the apical membrane, it plays a role in the maintenance of the filtration slit. In this study, we evaluated whether ligation of alpha-dystroglycan with specific antibodies or natural ligands induces intracellular signaling, and whether there is an effect on podocyte architecture. METHODOLOGY/PRINCIPAL FINDINGS: Conditionally immortalized podocytes were exposed in vitro to antibodies to alpha-dystroglycan, and to fibronectin, biglycan, laminin and agrin. Intracellular calcium fluxes, phosphorylation of beta-dystroglycan and podocyte architecture were studied. Antibodies to alpha-dystroglycan could specifically induce calcium signaling. Fibronectin also induced calcium signaling, and led to dephosphorylation of pY892 in beta-dystroglycan. Ligation of alpha-dystroglycan resulted in an altered actin architecture, a decreased number of podocyte pedicles and a more flattened appearance of the podocyte. CONCLUSIONS/SIGNIFICANCE: We conclude that ligation of alpha-dystroglycan on podocytes induces intracellular calcium signaling, which leads to an altered cytoskeleton architecture akin to the situation of foot process effacement. In particular the ability of fibronectin to induce intracellular signaling events is of interest, since the expression and excretion of this protein is upregulated in several proteinuric diseases. Therefore, fibronectin-induced signaling via dystroglycan may be a novel mechanism for foot process effacement in proteinuric diseases.


Assuntos
Distroglicanas/fisiologia , Podócitos/metabolismo , Actinas/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Citoesqueleto/metabolismo , Distroglicanas/metabolismo , Fibronectinas/metabolismo , Glicoproteínas/metabolismo , Glomérulos Renais/metabolismo , Ligantes , Camundongos , Modelos Biológicos , Transdução de Sinais
6.
Nephrol Dial Transplant ; 22(7): 1891-902, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17550924

RESUMO

BACKGROUND: Recently, we identified specific N- and 6-O-sulphated heparan sulphate (HS) domains on activated glomerular endothelial cells. In this study, we evaluated in lupus nephritis the expression of different HS domains on glomerular endothelium and in the glomerular basement membrane (GBM). METHODS: The expression of specific glomerular HS domains and the presence of immunoglobulins (Ig) were determined by immunofluorescence staining of kidney sections of patients with nephritis due to systemic lupus erythematosus (SLE) and MRL/lpr lupus mice. The expression/presence of glomerular HS domains and Ig was also evaluated after eluting Ig from renal sections of lupus mice using two elution methods, and in renal sections of lupus mice treated with heparinoids. RESULTS: Both MRL/lpr mice and patients with lupus nephritis showed a decreased expression of HS in the GBM. The expression of N- and 6-O-sulphated HS domains on glomerular endothelium was decreased in MRL/lpr mice, but increased in SLE patients. MRL/lpr mice had more extensive glomerular Ig deposits than SLE patients. After elution of Ig, the glomerular endothelial expression of N- and 6-O-sulphated HS domains in MRL/lpr mice was recovered and even increased above normal levels, while the expression of HS in the GBM was restored to normal levels. Treatment with heparinoids prevented Ig deposition and preserved the expression of glomerular HS domains at normal levels in lupus mice. CONCLUSION: The expression of specific HS domains on glomerular endothelium and in the GBM is changed during lupus nephritis due to masking by Ig deposits and induction of inflammatory N- and 6-O-sulphated HS domains.


Assuntos
Heparitina Sulfato/metabolismo , Glomérulos Renais/metabolismo , Nefrite Lúpica/metabolismo , Adulto , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Imunofluorescência , Heparina de Baixo Peso Molecular/farmacologia , Heparitina Sulfato/química , Humanos , Imunoglobulinas/efeitos dos fármacos , Imunoglobulinas/metabolismo , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Lúpus Eritematoso Sistêmico/complicações , Nefrite Lúpica/etiologia , Nefrite Lúpica/patologia , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , Coloração e Rotulagem , Distribuição Tecidual
7.
J Biol Chem ; 281(40): 29606-13, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16885165

RESUMO

Heparan sulfate (HS) proteoglycans are major anionic glycoconjugates of the glomerular basement membrane and are thought to contribute to the permeability properties of the glomerular capillary wall. In this study we evaluated whether the development of (micro) albuminuria in early human and experimental diabetic nephropathy is related to changes in glomerular HS expression or structure. Using a panel of recently characterized antibodies, glomerular HS expression was studied in kidney biopsies of type I diabetic patients with microalbuminuria or early albuminuria and in rat renal tissue after 5 months diabetes duration. Glomerular staining, however, revealed no differences between control and diabetic specimens. A significant (p < 0.05) approximately 60% increase was found in HS N-deacetylase activity, a key enzyme in HS sulfation reactions, in diabetic glomeruli. Structural analysis of glomerular HS after in vivo and in vitro radiolabeling techniques revealed no changes in HS N-sulfation or charge density. Also HS chain length, protein binding properties, as well as disaccharide composition did not differ between control and diabetic glomerular HS samples. These results indicate that in experimental and early human diabetic nephropathy, increased urinary albumin excretion is not caused by loss of glomerular HS expression or sulfation and suggest other mechanisms to be responsible for increased glomerular albumin permeability.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Heparitina Sulfato/química , Glomérulos Renais/química , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Humanos , Glomérulos Renais/patologia , Masculino , Ratos , Ratos Wistar , Estreptozocina/administração & dosagem
8.
J Histochem Cytochem ; 53(11): 1345-53, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15956031

RESUMO

alpha-Dystroglycan (DG) is a negatively charged membrane-associated glycoprotein that links the cytoskeleton to the extracellular matrix. Previously, we described that alpha-DG covers the whole podocyte cell membrane in the rat. However, our finding was challenged by the description of a strictly basolateral localization in human kidney biopsies, using a different antibody against alpha-DG. Therefore, we studied the exact localization of glomerular alpha-DG by using these two antibodies in both species. The studies were performed by using monoclonal antibodies (MoAbs) IIH6 and VIA4.1 in immunofluorescence, confocal microscopy, and immunoelectron microscopy on both rat and human kidney sections, as well as on cultured mouse podocytes. The apical localization of alpha-DG on podocytes was more dominant than the basolateral localization. The basolateral staining with MoAb VIA4.1 was more pronounced than that of MoAb IIH6. With both MoAbs, the staining in rat kidneys was more prominent, in comparison to human kidneys. We conclude that alpha-DG is expressed at both the basolateral and apical sides of the podocyte. This localization suggests that alpha-DG plays a dual role in the maintenance of the unique architecture of podocytes by its binding to the glomerular basement membrane, and in the maintenance of the integrity of the filtration slit, respectively.


Assuntos
Distroglicanas/metabolismo , Podócitos/metabolismo , Animais , Anticorpos Monoclonais , Células Cultivadas , Distroglicanas/imunologia , Feminino , Imunofluorescência , Humanos , Rim/metabolismo , Rim/ultraestrutura , Camundongos , Microscopia Confocal , Microscopia Imunoeletrônica , Especificidade de Órgãos , Ratos , Ratos Wistar , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...