Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Pharmacol Exp Ther ; 385(3): 214-221, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997325

RESUMO

Diabetic retinopathy (DR) is a leading cause of vision loss in working-age adults. Despite an established standard of care for advanced forms of DR, some patients continue to lose vision after treatment. This may be due to the development of diabetic macular ischemia (DMI), which has no approved treatment. Neuropilin-1 (Nrp-1) is a coreceptor with two ligand-binding domains, with semaphorin-3A (Sema3A) binding to the A-domain and vascular endothelial growth factor-A (VEGF-A) binding to the B-domain. Sema3A directs a subset of neuronal growth cones as well as blood vessel growth by repulsion; when bound to Nrp-1, VEGF-A mediates vascular permeability and angiogenesis. Modulating Nrp-1 could therefore address multiple complications arising from DR, such as diabetic macular edema (DME) and DMI. BI-Y is a monoclonal antibody that binds to the Nrp-1 A-domain, antagonizing the effects of the ligand Sema3A and inhibiting VEGF-A-induced vascular permeability. This series of in vitro and in vivo studies examined the binding kinetics of BI-Y to Nrp-1 with and without VEGF-A165, the effect of BI-Y on Sema3A-induced cytoskeletal collapse, the effect of BI-Y on VEGF- A165-induced angiogenesis, neovascularization, cell integrity loss and permeability, and retinal revascularization. The data show that BI-Y binds to Nrp-1 and inhibits Sema3A-induced cytoskeletal collapse in vitro, may enhance revascularization of ischemic areas in an oxygen-induced retinopathy mouse model, and prevents VEGF-A-induced retinal hyperpermeability in rats. However, BI-Y does not interfere with VEGF-A-dependent choroidal neovascularization. These results support further investigation of BI-Y as a potential treatment for DMI and DME. SIGNIFICANCE STATEMENT: Diabetic macular ischemia (DMI) is a complication of diabetic retinopathy (DR) with no approved pharmacological treatment. Diabetic macular edema (DME) commonly co-occurs with DMI in patients with DR. This series of preclinical studies in mouse and rat models shows that neuropilin-1 antagonist BI-Y may enhance the revascularization of ischemic areas and prevents vascular endothelial growth factor-A (VEGF-A)-induced retinal hyperpermeability without affecting VEGF-A-dependent choroidal neovascularization; thus, BI-Y may be of interest as a potential treatment for patients with DR.


Assuntos
Neovascularização de Coroide , Retinopatia Diabética , Edema Macular , Doenças Retinianas , Animais , Camundongos , Ratos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Ligantes , Edema Macular/tratamento farmacológico , Edema Macular/metabolismo , Neuropilina-1/antagonistas & inibidores , Neuropilina-1/metabolismo , Roedores/metabolismo , Semaforina-3A , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Sci Rep ; 12(1): 19395, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371417

RESUMO

Retinopathies are multifactorial diseases with complex pathologies that eventually lead to vision loss. Animal models facilitate the understanding of the pathophysiology and identification of novel treatment options. However, each animal model reflects only specific disease aspects and understanding of the specific molecular changes in most disease models is limited. Here, we conducted transcriptome analysis of murine ocular tissue transduced with recombinant Adeno-associated viruses (AAVs) expressing either human VEGF-A, TNF-α, or IL-6. VEGF expression led to a distinct regulation of extracellular matrix (ECM)-associated genes. In contrast, both TNF-α and IL-6 led to more comparable gene expression changes in interleukin signaling, and the complement cascade, with TNF-α-induced changes being more pronounced. Furthermore, integration of single cell RNA-Sequencing data suggested an increase of endothelial cell-specific marker genes by VEGF, while TNF-α expression increased the expression T-cell markers. Both TNF-α and IL-6 expression led to an increase in macrophage markers. Finally, transcriptomic changes in AAV-VEGF treated mice largely overlapped with gene expression changes observed in the oxygen-induced retinopathy model, especially regarding ECM components and endothelial cell-specific gene expression. Altogether, our study represents a valuable investigation of gene expression changes induced by VEGF, TNF-α, and IL-6 and will aid researchers in selecting appropriate animal models for retinopathies based on their agreement with the human pathophysiology.


Assuntos
Doenças Retinianas , Fator de Necrose Tumoral alfa , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Interleucina-6/genética , Perfilação da Expressão Gênica
3.
Front Cell Dev Biol ; 10: 910040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092714

RESUMO

The therapeutic potential of pluripotent stem cells is great as they promise to usher in a new era of medicine where cells or organs may be prescribed to replace dysfunctional tissue. At the forefront are efforts in the eye to develop this technology as it lends itself to in vivo monitoring and sophisticated non-invasive imaging modalities. In the retina, retinal pigment epithelium (RPE) is the most promising replacement cell as it has a single layer, is relatively simple to transplant, and is associated with several eye diseases. However, after transplantation, the cells may transform and cause complications. This transformation may be partially due to incomplete maturation. With the goal of learning how to mature RPE, we compared induced pluripotent stem cell-derived RPE (iPSC-RPE) cells with adult human primary RPE (ahRPE) cells and the immortalized human ARPE-19 line. We cultured ARPE-19, iPSC-RPE, and ahRPE cells for one month, and evaluated morphology, RPE marker staining, and transepithelial electrical resistance (TEER) as quality control indicators. We then isolated RNA for bulk RNA-sequencing and DNA for genotyping. We genotyped ahRPE lines for the top age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR) risk allele polymorphisms. Transcriptome data verified that both adult and iPSC-RPE exhibit similar RPE gene expression signatures, significantly higher than ARPE-19. In addition, in iPSC-RPE, genes relating to stem cell maintenance, retina development, and muscle contraction were significantly upregulated compared to ahRPE. We compared ahRPE to iPSC-RPE in a model of epithelial-mesenchymal transition (EMT) and observed an increased sensitivity of iPSC-RPE to producing contractile aggregates in vitro which resembles incident reports upon transplantation. P38 inhibition was capable of inhibiting iPSC-RPE-derived aggregates. In summary, we find that the transcriptomic signature of iPSC-RPE conveys an immature RPE state which may be ameliorated by targeting "immature" gene regulatory networks.

4.
Invest Ophthalmol Vis Sci ; 63(8): 14, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35822950

RESUMO

Purpose: Semaphorin 3A (Sema3A) is a promising therapeutic target for macular edema in age-related macular degeneration, diabetic retinopathy, and retinal vein occlusion (RVO). Anti-vascular endothelial growth factors (anti-VEGFs) are the current standard of care for many retinal diseases. This study investigated the Sema3A neutralizing antibody BI-X and/or anti-VEGF therapy (aflibercept) in an RVO mouse model. Treatment efficacy was examined and grouped by timing subsequent to the RVO mouse model induction: efficacy against the onset of intraretinal edema 1 day postinduction and protective effects at 7 days postinduction. Methods: We examined the changes in expression of Sema3A in the retina of an RVO mouse model. In addition, changes in expression of tumor necrosis factor (TNF)-α and semaphorin-related proteins (neuropilin-1 and plexin A1) in the retina upon treatment were analyzed by Western blotting. The effects of BI-X and/or aflibercept were evaluated using measures of retinal edema, blood flow, and thinning of the inner nuclear layer. Results: Induction of vein occlusion in the RVO mouse model significantly increased Sema3A expression in the retina, particularly in the inner nuclear layer. BI-X was effective as a monotherapy and in combination with anti-VEGF therapy, demonstrating a beneficial effect on intraretinal edema and retinal blood flow. Moreover, in the RVO mouse model, BI-X monotherapy normalized the changes in expression of TNF-α and semaphorin-related proteins. Conclusions: These findings support targeting Sema3A to treat intraretinal edema and retinal ischemia.


Assuntos
Edema Macular , Doenças Retinianas , Oclusão da Veia Retiniana , Inibidores da Angiogênese/uso terapêutico , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Modelos Animais de Doenças , Injeções Intravítreas , Edema Macular/tratamento farmacológico , Masculino , Camundongos , Retina/patologia , Doenças Retinianas/patologia , Oclusão da Veia Retiniana/metabolismo , Semaforina-3A/metabolismo
5.
Transl Vis Sci Technol ; 11(6): 17, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727188

RESUMO

Purpose: Semaphorin 3A (Sema3A) is an axonal guidance molecule that inhibits angiogenesis by vasorepulsion and blocks revascularization in the ischemic retina. BI-X is an intravitreal anti-Sema3A agent under clinical investigation in patients with proliferative diabetic retinopathy (PDR) and diabetic macular ischemia (DMI). Methods: Surface plasmon resonance was used to determine binding affinity of BI-X to human and murine Sema3A. In vitro, human retinal microvascular endothelial cells (HRMECs) were used to assess effects of BI-X on cell permeability and cytoskeletal collapse induced by Sema3A. In vivo, intravitreal BI-X or an anti-trinitrophenol control antibody was administered in both eyes in mice with oxygen-induced retinopathy (OIR). Retinal flat mounts were prepared, and avascular area and tip cell density were determined using confocal laser-scanning microscopy. Results: Dissociation constants for BI-X binding to human and murine Sema3A were 29 pM and 27 pM, respectively. In vitro, BI-X prevented HRMEC permeability and cytoskeletal collapse induced by Sema3A. In vivo, BI-X increased tip cell density by 33% (P < 0.001) and reduced avascular area by 12% (not significant). A significant negative correlation was evident between avascular area and tip cell density (r2 = 0.4205, P < 0.0001). Conclusions: BI-X binds to human Sema3A with picomolar affinity and prevents cell permeability and cytoskeletal collapse in HRMECs. BI-X also enhances revascularization in mice with OIR. Translational Relevance: BI-X is a potent inhibitor of human Sema3A that improves revascularization in a murine model of OIR; BI-X is currently being investigated in patients with laser-treated PDR and DMI.


Assuntos
Citoesqueleto , Retinopatia Diabética , Doenças Retinianas , Animais , Contagem de Células , Permeabilidade da Membrana Celular , Retinopatia Diabética/tratamento farmacológico , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Oxigênio/toxicidade , Permeabilidade , Retina , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia
6.
Transl Vis Sci Technol ; 11(5): 18, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35579886

RESUMO

Purpose: Inflammation is implicated in the etiology of diverse retinopathies including uveitis, age-related macular degeneration or diabetic retinopathy. Tumor necrosis factor alpha (TNF-α) is a well-known proinflammatory cytokine that is described as a biomarker for inflammation in diverse retinopathies and therefore emerged as an interesting target to treat inflammation in the eye by neutralizing anti-TNF-α antibodies. Methods: Recently, we have demonstrated that Adeno-associated virus (AAV)-mediated expression of human TNF-α in the murine eye induces retinal inflammation including vasculitis and fibrosis, thereby mimicking human disease-relevant pathologies. In a proof-of-mechanism study, we now tested whether AAV-TNF-α induced pathologies can be reversed by neutralizing TNF-α antibody treatment. Results: Strikingly, a single intravitreal injection of the TNF-α antibody golimumab reduced AAV-TNF-α-induced retinal inflammation and retinal thickening. Furthermore, AAV-TNF-α-mediated impaired retinal function was partially rescued by golimumab as revealed by electroretinography recordings. Finally, to study TNF-α-induced vasculitis in human in vitro cell culture assays, we established a monocyte-to-endothelium adhesion co-culture system. Indeed, also in vitro TNF-α induced monocyte adhesion to human retinal endothelial cells, which was prevented by golimumab. Conclusions: Overall, our study describes valuable in vitro and in vivo approaches to study the function of TNF-α in retinal inflammation and demonstrated a preclinical proof-of-mechanism treatment with golimumab. Translational Relevance: The AAV-based model expressing human TNF-α allows us to investigate TNF-α-driven pathologies supporting research in mechanisms of retinal inflammation.


Assuntos
Doenças Retinianas , Fator de Necrose Tumoral alfa , Vasculite , Animais , Dependovirus/genética , Células Endoteliais/patologia , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Vasculite/etiologia , Vasculite/patologia
7.
Transl Vis Sci Technol ; 10(11): 15, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520511

RESUMO

Purpose: Retinopathies display complex pathologies, including vasculopathies, inflammation, and fibrosis, leading ultimately to visual impairment. However, animal models accurately reflecting these pathologies are lacking. In this study, we evaluate the suitability of using Adeno-associated virus (AAV)-mediated long-term expression of cytokines to establish retinal pathology in the murine retina. Methods: We administered recombinant, Müller-glia targeted AAV-ShH10 into the mouse vitreous to induce retinal expression of either human vascular endothelial growth factor (VEGF)-A165, tumor necrosis factor alpha (TNF-α), or interleukin-6 (IL-6) and evaluated consequent effects by optical coherence tomography, fluorescein angiography, and histology. Results: Intravitreal injection of AAVs resulted in rapid and stable expression of the transgenes within 1 to 6 weeks. Akin to the role of VEGF-A in wet age-related macular degeneration, expression of VEGF-A led to several vasculopathies in mice, including neovascularization and vascular leakage. In contrast, the expression of the proinflammatory cytokines TNF-α or IL-6 induced retinal inflammation, as indicated by microglial activation. Furthermore, the expression of TNF-α, but not of IL-6, induced immune cell infiltration into the vitreous as well as vasculitis, and subsequently induced the development of fibrosis and epiretinal membranes. Conclusions: In summary, the long-term expression of human VEGF-A165, TNF-α, or IL-6 in the mouse eye induced specific pathologies within 6 weeks that mimic different aspects of human retinopathies. Translational Relevance: AAV-mediated expression of human genes in mice is an attractive approach to provide valuable insights into the underlying molecular mechanisms causing retinopathies and is easily adaptable to other genes and preclinical species supporting drug discovery for retinal diseases.


Assuntos
Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular , Animais , Dependovirus/genética , Humanos , Interleucina-6/genética , Camundongos , Retina , Fator de Necrose Tumoral alfa/genética , Fator A de Crescimento do Endotélio Vascular/genética
8.
Pharmaceutics ; 13(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34452066

RESUMO

Rho-associated kinase (ROCK) activation was shown to contribute to microvascular closure, retinal hypoxia, and to retinal pigment epithelium (RPE) barrier disruption in a rat model of diabetic retinopathy. Fasudil, a clinically approved ROCK inhibitor, improved retinal perfusion and reduced edema in this model, indicating that ROCK inhibition could be a promising new therapeutic approach for the treatment of diabetic retinopathy. However, due to its short intravitreal half-life, fasudil is not suitable for long-term treatment. In this study, we evaluated a very potent ROCK1/2 inhibitor (BIRKI) in a depot formulation administered as a single intravitreal injection providing a slow release for at least four weeks. Following BIRKI intravitreal injection in old Goto-Kakizaki (GK) type 2 diabetic rats, we observed a significant reduction in ROCK1 activity in the retinal pigment epithelium/choroid complex after 8 days and relocation of ROCK1 to the cytoplasm and nucleus in retinal pigment epithelium cells after 28 days. The chronic ROCK inhibition by the BIRKI depot formulation restored retinal pigment epithelial cell morphology and distribution, favored retinal capillaries dilation, and reduced hypoxia and inner blood barrier leakage observed in the diabetic retina. No functional or morphological negative effects were observed, indicating suitable tolerability of BIRKI after intravitreous injection. In conclusion, our data suggest that sustained ROCK inhibition, provided by BIRKI slow-release formulation, could be a valuable treatment option for diabetic retinopathy, especially with regard to the improvement of retinal vascular infusion and protection of the outer retinal barrier.

9.
Sci Rep ; 11(1): 10494, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006945

RESUMO

Diabetic Retinopathy (DR) is among the major global causes for vision loss. With the rise in diabetes prevalence, an increase in DR incidence is expected. Current understanding of both the molecular etiology and pathways involved in the initiation and progression of DR is limited. Via RNA-Sequencing, we analyzed mRNA and miRNA expression profiles of 80 human post-mortem retinal samples from 43 patients diagnosed with various stages of DR. We found differentially expressed transcripts to be predominantly associated with late stage DR and pathways such as hippo and gap junction signaling. A multivariate regression model identified transcripts with progressive changes throughout disease stages, which in turn displayed significant overlap with sphingolipid and cGMP-PKG signaling. Combined analysis of miRNA and mRNA expression further uncovered disease-relevant miRNA/mRNA associations as potential mechanisms of post-transcriptional regulation. Finally, integrating human retinal single cell RNA-Sequencing data revealed a continuous loss of retinal ganglion cells, and Müller cell mediated changes in histidine and ß-alanine signaling. While previously considered primarily a vascular disease, attention in DR has shifted to additional mechanisms and cell-types. Our findings offer an unprecedented and unbiased insight into molecular pathways and cell-specific changes in the development of DR, and provide potential avenues for future therapeutic intervention.


Assuntos
Retinopatia Diabética/genética , Retina/metabolismo , Transcriptoma , Retinopatia Diabética/patologia , Progressão da Doença , Expressão Gênica , Humanos , Células Ganglionares da Retina/metabolismo , Análise de Sequência de RNA/métodos , Índice de Gravidade de Doença , Análise de Célula Única/métodos
10.
Int J Retina Vitreous ; 7(1): 30, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845913

RESUMO

BACKGROUND: Diabetic retinopathy (DR), a microvascular complication of diabetes, is the leading cause of visual impairment in people aged 20-65 years and can go undetected until vision is irreversibly lost. There is a need for treatments for non-proliferative diabetic retinopathy (NPDR) which, in comparison with current intravitreal (IVT) injections, offer an improved risk-benefit ratio and are suitable for the treatment of early stages of disease, during which there is no major visual impairment. Efficacious systemic therapy for NPDR, including oral treatment, would be an important and convenient therapeutic approach for patients and physicians and would reduce treatment burden. In this article, we review the rationale for the investigation of amine oxidase copper-containing 3 (AOC3), also known as semicarbazide-sensitive amine oxidase and vascular adhesion protein 1 (VAP1), as a novel target for the early treatment of moderate to severe NPDR. AOC3 is a membrane-bound adhesion protein that facilitates the binding of leukocytes to the retinal endothelium. Adherent leukocytes reduce blood flow and in turn rupture blood vessels, leading to ischemia and edema. AOC3 inhibition reduces leukocyte recruitment and is predicted to decrease the production of reactive oxygen species, thereby correcting the underlying hypoxia, ischemia, and edema seen in DR, as well as improving vascular function. CONCLUSION: There is substantial unmet need for convenient, non-invasive treatments targeting moderately severe and severe NPDR to reduce progression and preserve vision. The existing pharmacotherapies (IVT corticosteroids and IVT anti-vascular endothelial growth factor-A) target inflammation and angiogenesis, respectively. Unlike these treatments, AOC3 inhibition is predicted to address the underlying hypoxia and ischemia seen in DR. AOC3 inhibitors represent a promising therapeutic strategy for treating patients with DR and could offer greater choice and reduce treatment burden, with the potential to improve patient compliance.

11.
ChemMedChem ; 16(4): 630-639, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33030297

RESUMO

Drugs targeting type 4 dipeptidyl peptidase (DPP-4) are beneficial for glycemic control, whereas fibroblast activation protein alpha (FAP-α) is a potential target for cancer therapies. Unlike other gliptins, linagliptin displays FAP inhibition. We compared biophysical and structural characteristics of linagliptin binding to DPP-4 and FAP to better understand what differentiates linagliptin from other gliptins. Linagliptin exhibited high binding affinity (KD ) and a slow off-rate (koff ) when dissociating from DPP-4 (KD 6.6 pM; koff 5.1×10-5  s-1 ), and weaker inhibitory potency to FAP (KD 301 nM; koff >1 s-1 ). Co-structures of linagliptin with DPP-4 or FAP were similar except for one second shell amino acid difference: Asp663 (DPP-4) and Ala657 (FAP). pH dependence of enzymatic activities and binding of linagliptin for DPP-4 and FAP are dependent on this single amino acid difference. While linagliptin may not display any anticancer activity at therapeutic doses, our findings may guide future studies for the development of optimized inhibitors.


Assuntos
Aminoácidos/análise , Dipeptidil Peptidase 4/metabolismo , Linagliptina/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endopeptidases/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Linagliptina/química , Proteínas de Membrana/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
12.
J Med Chem ; 59(16): 7466-77, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27438064

RESUMO

The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Termodinâmica , Sítios de Ligação , Inibidores da Dipeptidil Peptidase IV/química , Relação Dose-Resposta a Droga , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
13.
Mol Pharmacol ; 79(2): 262-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21081645

RESUMO

Rearrangement of transmembrane domains (TMs) 3 and 5 after agonist binding is necessary for stabilization of the active state of class A G protein-coupled receptors (GPCRs). Using site-directed mutagenesis and functional assays, we provide the first evidence that the TAS(I/V) sequence motif at positions 3.37 to 3.40, highly conserved in aminergic receptors, plays a key role in the activation of the histamine H1 receptor. By combining these data with structural information from X-ray crystallography and computational modeling, we suggest that Thr(3.37) interacts with TM5, stabilizing the inactive state of the receptor, whereas the hydrophobic side chain at position 3.40, highly conserved in the whole class A GPCR family, facilitates the reorientation of TM5. We propose that the structural change of TM5 during the process of GPCR activation involves a local Pro(5.50)-induced unwinding of the helix, acting as a hinge, and the highly conserved hydrophobic Ile(3.40) side chain, acting as a pivot.


Assuntos
Proteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Receptores Acoplados a Proteínas G/genética
14.
Methods Enzymol ; 485: 81-101, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21050912

RESUMO

Human muscarinic M3 receptors (hM3Rs) induce smooth muscle contraction and mucus gland secretion in response to parasympathetic stimulation. As a consequence of hM3R function, muscarinic antagonists have wide therapeutic use to treat overactive bladder, abdominal pain (irritable bowel syndrome), and chronic obstructive pulmonary disease (COPD). In this chapter, we describe the set up and results obtained with different in vitro assays to monitor hM3R activation (agonist-dependent and constitutive) and evaluate functional potencies of different anticholinergics in CHO cells. Given the G(q) coupling of hM3R, assays measuring the second messengers inositol phosphates (InsP) and an AP-1-driven reporter luciferase were developed. In our hands, the reporter gene assay shows advantages: firstly, thanks to the longer incubation times, it allows reaching of pseudo-equilibrium also for ligands with slower receptor dissociation kinetics (e.g., tiotropium). Secondly, the AP-1-driven luciferase detects significant constitutive activity of the hM3R, which allows characterizing the different anticholinergics for their inverse agonist properties. Given the potential for inverse agonists to cause changes in receptor expression, monitoring hM3R upregulation is another important pharmacological parameter. Here, we describe how to measure the effect of chronic exposure to anticholinergics on the expression levels of hM3R, with particular attention to ensure full antagonist removal from receptor pool before hM3R quantification. Taken together, our results indicate that anticholinergics exhibit differential pharmacological behaviors, which are dependent on the pathway investigated, and therefore provide evidence that the molecular mechanism of inverse agonism is likely to be more complex than the stabilization of a single inactive receptor conformation.


Assuntos
Antagonistas Colinérgicos/farmacologia , Agonismo Inverso de Drogas , Expressão Gênica/efeitos dos fármacos , Receptor Muscarínico M3/metabolismo , Animais , Células CHO , Antagonistas Colinérgicos/uso terapêutico , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter , Humanos , Fosfatos de Inositol/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Receptor Muscarínico M3/genética , Regulação para Cima/efeitos dos fármacos
15.
Mol Pharmacol ; 77(5): 734-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20103609

RESUMO

The histamine H(4) receptor (H(4)R) is the latest identified histamine receptor to emerge as a potential drug target for inflammatory diseases. Animal models are employed to validate this potential drug target. Concomitantly, various H(4)R orthologs have been cloned, including the human, mouse, rat, guinea pig, monkey, pig, and dog H(4)Rs. In this article, we expressed all these H(4)R orthologs in human embryonic kidney 293T cells and compared their interactions with currently used standard H(4)R ligands, including the H(4)R agonists histamine, 4-methylhistamine, guanidinylethyl isothiourea (VUF 8430), the H(4)R antagonists 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine (JNJ 7777120) and [(5-chloro-1H-benzimidazol-2-yl)carbonyl]-4-methylpiperazine (VUF 6002), and the inverse H(4)R agonist thioperamide. Most of the evaluated ligands display significantly different affinities at the different H(4)R orthologs. These "natural mutants" of H(4)R were used to study ligand-receptor interactions by using chimeric human-pig-human and pig-human-pig H(4)R proteins and site-directed mutagenesis. Our results are a useful reference for ligand selection for studies in animal models of diseases and offer new insights in the understanding of H(4)R-ligand receptor interactions.


Assuntos
Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/genética , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , DNA Complementar/genética , Cães , Variação Genética , Cobaias , Haplorrinos , Histamina/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmídeos , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4 , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transfecção
16.
Br J Pharmacol ; 157(1): 34-43, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19413569

RESUMO

BACKGROUND AND PURPOSE: We compare the pharmacological profiles of a new histamine H4 receptor agonist 2-(2-guanidinoethyl)isothiourea (VUF 8430) with that of a previously described H4 receptor agonist, 4-methylhistamine. EXPERIMENTAL APPROACH: Radioligand binding and functional assays were performed using histamine H4 receptors expressed in mammalian cell lines. Compounds were also evaluated ex vivo in monocyte-derived dendritic cells endogenously expressing H4 receptors and in vivo in anaesthetized rats for gastric acid secretion activity. KEY RESULTS: Both VUF 8430 and 4-methylhistamine were full agonists at human H4 receptors with lower affinity at rat and mouse H4 receptors. Both compounds induced chemotaxis of monocyte-derived dendritic cells. VUF 8430 also showed reasonable affinity and was a full agonist at the H3 receptor. Agmatine is a metabolite of arginine, structurally related to VUF 8430, and was a H4 receptor agonist with micromolar affinity. At histamine H3 receptors, agmatine was a full agonist, whereas 4-methylhistamine was an agonist only at high concentrations. Both VUF 8430 and agmatine were inactive at H1 and H2 receptors, whereas 4-methylhistamine is as active as histamine at H2 receptors. In vivo, VUF 8430 only caused a weak secretion of gastric acid mediated by H2 receptors, whereas 4-methylhistamine, dimaprit, histamine and amthamine, at equimolar doses, induced 2.5- to 6-fold higher output than VUF 8430. CONCLUSIONS AND IMPLICATIONS: Our results suggest complementary use of 4-methylhistamine and VUF 8430 as H4 receptor agonists. Along with H4 receptor antagonists, both agonists can serve as useful pharmacological tools in studies of histamine H4 receptors.


Assuntos
Guanidinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Tioureia/análogos & derivados , Agmatina/farmacologia , Animais , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Chlorocebus aethiops , Células Dendríticas/fisiologia , Ácido Gástrico/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Humanos , Masculino , Metilistaminas/farmacologia , Camundongos , Ensaio Radioligante , Ratos , Ratos Wistar , Receptores Histamínicos , Receptores Histamínicos H2/metabolismo , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H4 , Tioureia/farmacologia
17.
Bioorg Med Chem ; 17(11): 3987-94, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19414267

RESUMO

Previous studies have demonstrated that clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) binds to both the human histamine H(3) receptor (H(3)R) and H(4) receptor (H(4)R). In this paper, we describe the synthesis and pharmacological characterization of a series of clobenpropit analogs, which vary in the functional group adjacent to the isothiourea moiety in order to study structural requirements for H(3)R and H(4)R ligands. The compounds show moderate to high affinity for both the human H(3)R and H(4)R. Furthermore, the changes in the functional group attached to the isothiourea moiety modulate the intrinsic activity of the ligands at the H(4)R, ranging from neutral antagonism to full agonism. QSAR models have been generated in order to explain the H(3)R and H(4)R affinities.


Assuntos
Antagonistas dos Receptores Histamínicos H3/química , Imidazóis/síntese química , Imidazóis/farmacologia , Relação Quantitativa Estrutura-Atividade , Receptores Acoplados a Proteínas G/química , Receptores Histamínicos H3/química , Receptores Histamínicos/química , Tioureia/análogos & derivados , Antagonistas dos Receptores Histamínicos H3/farmacologia , Humanos , Imidazóis/química , Ligantes , Masculino , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Receptores Histamínicos H4 , Tioureia/síntese química , Tioureia/química , Tioureia/farmacologia
18.
J Pharmacol Exp Ther ; 327(1): 88-96, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18635748

RESUMO

Using the natural variation in histamine H(4) receptor protein sequence, we tried to identify amino acids involved in the binding of H(4) receptor agonists. To this end, we constructed a variety of chimeric human-mouse H(4) receptor proteins to localize the domain responsible for the observed pharmacological differences between human and mouse H(4) receptors in the binding of H(4) receptor agonists, such as histamine, clozapine, and VUF 8430 [S-(2-guanidylethyl)-isothiourea]. After identification of a domain between the top of transmembrane domain 4 and the top of transmembrane domain 5 as being responsible for the differences in agonist affinity between human and mouse H(4)Rs, detailed site-directed mutagenesis studies were performed. These studies identified Phe(169) in the second extracellular loop as the single amino acid responsible for the differences in agonist affinity between the human and mouse H(4)Rs. Phe(169) is part of a Phe-Phe motif, which is also present in the recently crystallized beta(2)-adrenergic receptor. These results point to an important role of the second extracellular loop in the agonist binding to the H(4) receptor and provide a molecular explanation for the species difference between human and mouse H(4) receptors.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Histamínicos/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Histamina/metabolismo , Humanos , Indóis/metabolismo , Camundongos , Dados de Sequência Molecular , Fenilalanina , Piperazinas/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Histamínicos H4 , Especificidade da Espécie
19.
Biochem J ; 414(1): 121-31, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18452403

RESUMO

The H(4)R (histamine H(4) receptor) is the latest identified member of the histamine receptor subfamily of GPCRs (G-protein-coupled receptors) with potential functional implications in inflammatory diseases and cancer. The H(4)R is primarily expressed in eosinophils and mast cells and has the highest homology with the H(3)R. The occurrence of at least twenty different hH(3)R (human H(3)R) isoforms led us to investigate the possible existence of H(4)R splice variants. In the present paper, we report on the cloning of the first two alternatively spliced H(4)R isoforms from CD34+ cord blood-cell-derived eosinophils and mast cells. These H(4)R splice variants are localized predominantly intracellularly when expressed recombinantly in mammalian cells. We failed to detect any ligand binding, H(4)R-ligand induced signalling or constitutive activity for these H(4)R splice variants. However, when co-expressed with full-length H(4)R [H(4)R((390)) (H(4)R isoform of 390 amino acids)], the H(4)R splice variants have a dominant negative effect on the surface expression of H(4)R((390)). We detected H(4)R((390))-H(4)R splice variant hetero-oligomers by employing both biochemical (immunoprecipitation and cell-surface labelling) and biophysical [time-resolved FRET (fluorescence resonance energy transfer)] techniques. mRNAs encoding the H(4)R splice variants were detected in various cell types and expressed at similar levels to the full-length H(4)R((390)) mRNA in, for example, pre-monocytes. We conclude that the H(4)R splice variants described here have a dominant negative effect on H(4)R((390)) functionality, as they are able to retain H(4)R((390)) intracellularly and inactivate a population of H(4)R((390)), presumably via hetero-oligomerization.


Assuntos
Variação Genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/química , Receptores Histamínicos/genética , Sequência de Aminoácidos , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Clonagem Molecular , Sangue Fetal/química , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Células HL-60 , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Receptores Histamínicos/biossíntese , Receptores Histamínicos H4
20.
J Med Chem ; 51(10): 2944-53, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18433114

RESUMO

Research on the therapeutic applications of the histamine H3 receptor (H3R) has traditionally focused on antagonists/inverse agonists. In contrast, H3R agonists have received less attention despite their potential use in several disease areas. The lower availability of H3R agonists not only hampers their full therapeutic exploration, it also prevents an unequivocal understanding of the structural requirements for H3R activation. In the light of these important issues, we present our findings on 4-benzyl-1H-imidazole-based H3R agonists. Starting from two high throughput screen hits (10 and 11), the benzyl side chain was altered with lipophilic groups using combinatorial and classical chemical approaches (compounds 12-31). Alkyne- or oxazolino-substituents gave excellent affinities and agonist activities up to the single digit nM range. Our findings further substantiate the growing notion that basic ligand sidechains are not necessary for H 3R activation and reveal the oxazolino group as a hitherto unexplored functional group in H3R research.


Assuntos
Agonistas dos Receptores Histamínicos/síntese química , Imidazóis/síntese química , Oxazóis/síntese química , Receptores Histamínicos H3/metabolismo , Animais , Células CHO , Técnicas de Química Combinatória , Cricetinae , Cricetulus , Sistema Enzimático do Citocromo P-450/metabolismo , Desenho de Fármacos , Cobaias , Agonistas dos Receptores Histamínicos/química , Agonistas dos Receptores Histamínicos/farmacologia , Humanos , Imidazóis/química , Imidazóis/farmacologia , Técnicas In Vitro , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Modelos Moleculares , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Oxazóis/química , Oxazóis/farmacologia , Ligação Proteica , Ensaio Radioligante , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...