Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; : e13983, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840549

RESUMO

In the face of evolving agricultural practices and climate change, tools towards an integrated biovigilance platform to combat crop diseases, spore sampling, DNA diagnostics and predictive trajectory modelling were optimized. These tools revealed microbial dynamics and were validated by monitoring cereal rust fungal pathogens affecting wheat, oats, barley and rye across four growing seasons (2015-2018) in British Columbia and during the 2018 season in southern Alberta. ITS2 metabarcoding revealed disparity in aeromycobiota diversity and compositional structure across the Canadian Rocky Mountains, suggesting a barrier effect on air flow and pathogen dispersal. A novel bioinformatics classifier and curated cereal rust fungal ITS2 database, corroborated by real-time PCR, enhanced the precision of cereal rust fungal species identification. Random Forest modelling identified crop and land-use diversification as well as atmospheric pressure and moisture as key factors in rust distribution. As a valuable addition to explain observed differences and patterns in rust fungus distribution, trajectory HYSPLIT modelling tracked rust fungal urediniospores' northeastward dispersal from the Pacific Northwest towards southern British Columbia and Alberta, indicating multiple potential origins. Our Canadian case study exemplifies the power of an advanced biovigilance toolbox towards developing an early-warning system for farmers to detect and mitigate impending disease outbreaks.

2.
Front Plant Sci ; 15: 1369299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681221

RESUMO

The Flavin Monooxygenase (FMO) gene superfamily in plants is involved in various processes most widely documented for its involvement in auxin biosynthesis, specialized metabolite biosynthesis, and plant microbial defense signaling. The roles of FMOs in defense signaling and disease resistance have recently come into focus as they may present opportunities to increase immune responses in plants including leading to systemic acquired resistance, but are not well characterized. We present a comprehensive catalogue of FMOs found in genomes across vascular plants and explore, in depth, 170 wheat TaFMO genes for sequence architecture, cis-acting regulatory elements, and changes due to Transposable Element insertions. A molecular phylogeny separates TaFMOs into three clades (A, B, and C) for which we further report gene duplication patterns, and differential rates of homoeologue expansion and retention among TaFMO subclades. We discuss Clade B TaFMOs where gene expansion is similarly seen in other cereal genomes. Transcriptome data from various studies point towards involvement of subclade B2 TaFMOs in disease responses against both biotrophic and necrotrophic pathogens, substantiated by promoter element analysis. We hypothesize that certain TaFMOs are responsive to both abiotic and biotic stresses, providing potential targets for enhancing disease resistance, plant yield and other important agronomic traits. Altogether, FMOs in wheat and other crop plants present an untapped resource to be exploited for improving the quality of crops.

4.
BMC Biol ; 21(1): 233, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880702

RESUMO

BACKGROUND: The population structure of crop pathogens such as Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is of interest to researchers looking to understand these pathogens on a molecular level as well as those with an applied focus such as disease epidemiology. Cereal rusts can reproduce sexually or asexually, and the emergence of novel lineages has the potential to cause serious epidemics such as the one caused by the 'Warrior' lineage in Europe. In a global context, Pst lineages in Canada were not well-characterized and the origin of foreign incursions was not known. Additionally, while some Pst mating type genes have been identified in published genomes, there has been no rigorous assessment of mating type diversity and distribution across the species. RESULTS: We used a whole-genome/transcriptome sequencing approach for the Canadian Pst population to identify lineages in their global context and evidence tracing foreign incursions. More importantly: for the first time ever, we identified nine alleles of the homeodomain mating type locus in the worldwide Pst population and show that previously identified lineages exhibit a single pair of these alleles. Consistently with the literature, we find only two pheromone receptor mating type alleles. We show that the recent population shift from the 'PstS1' lineage to the 'PstS1-related' lineage is also associated with the introduction of a novel mating type allele (Pst-b3-HD) to the Canadian population. We also show evidence for high levels of mating type diversity in samples associated with the Himalayan center of diversity for Pst, including a single Canadian race previously identified as 'PstPr' (probable recombinant) which we identify as a foreign incursion, most closely related to isolates sampled from China circa 2015. CONCLUSIONS: These data describe a recent shift in the population of Canadian Pst field isolates and characterize homeodomain-locus mating type alleles in the global Pst population which can now be utilized in testing several research questions and hypotheses around sexuality and hybridization in rust fungi.


Assuntos
Basidiomycota , Alelos , Canadá , Basidiomycota/genética , Recombinação Genética , Europa (Continente) , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Methods Mol Biol ; 2659: 83-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249887

RESUMO

The isolation and transfection of protoplasts from plant leaves have been routinely used for transient expression and functional studies in model plants. However, current approaches to characterize pathogen effector molecules in a cereal host are inefficient and technically challenging. In this chapter, we describe a protocol to isolate and transfect barley mesophyll protoplasts with a fluorescently tagged fungal effector of the barley smut pathogen Ustilago hordei. Tagging of a fungal effector with a fluorescent protein and tracking its localization in cells of its natural host provides insight into its putative in planta localization and helps to narrow down the location of putative host interactors.


Assuntos
Hordeum , Hordeum/genética , Hordeum/microbiologia , Protoplastos , Transfecção , Folhas de Planta/genética , Folhas de Planta/microbiologia , Doenças das Plantas/microbiologia
6.
G3 (Bethesda) ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544127

RESUMO

The wheat leaf rust fungus, Puccinia triticina Erikss., is a worldwide pathogen of tetraploid durum and hexaploid wheat. Many races of P. triticina differ for virulence to specific leaf rust resistance genes and are found in most wheat-growing regions of the world. Wheat cultivars with effective leaf rust resistance exert selection pressure on P. triticina populations for virulent race types. The objectives of this study were to examine whole-genome sequence data of 121 P. triticina isolates and to gain insight into race evolution. The collection included isolates comprising of many different race phenotypes collected worldwide from common and durum wheat. One isolate from wild wheat relative Aegilops speltoides and two from Ae. cylindrica were also included for comparison. Based on 121,907 informative variants identified relative to the reference Race 1-1 genome, isolates were clustered into 11 major lineages with 100% bootstrap support. The isolates were also grouped based on variation in 1311 predicted secreted protein genes. In gene-coding regions, all groups had high ratios of nonsynonymous to synonymous mutations and nonsense to readthrough mutations. Grouping of isolates based on two main variation principle components for either genome-wide variation or variation just within the secreted protein genes, indicated similar groupings. Variants were distributed across the entire genome, not just within the secreted protein genes. Our results suggest that recurrent mutation and selection play a major role in differentiation within the clonal lineages.


Assuntos
Basidiomycota , Puccinia , Basidiomycota/genética , Mutação , Doenças das Plantas/genética
7.
J Fungi (Basel) ; 7(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513785

RESUMO

Obligate biotrophic fungal pathogens, such as Blumeria graminis and Puccinia graminis, are amongst the most devastating plant pathogens, causing dramatic yield losses in many economically important crops worldwide. However, a lack of reliable tools for the efficient genetic transformation has hampered studies into the molecular basis of their virulence or pathogenicity. In this study, we present the Ustilago hordei-barley pathosystem as a model to characterize effectors from different plant pathogenic fungi. We generate U. hordei solopathogenic strains, which form infectious filaments without the presence of a compatible mating partner. Solopathogenic strains are suitable for heterologous expression system for fungal virulence factors. A highly efficient Crispr/Cas9 gene editing system is made available for U. hordei. In addition, U. hordei infection structures during barley colonization are analyzed using transmission electron microscopy, showing that U. hordei forms intracellular infection structures sharing high similarity to haustoria formed by obligate rust and powdery mildew fungi. Thus, U. hordei has high potential as a fungal expression platform for functional studies of heterologous effector proteins in barley.

8.
J Fungi (Basel) ; 6(3)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961976

RESUMO

The basidiomycete Ustilago hordei causes covered smut disease of barley and oats. Virulence effectors promoting infection and supporting pathogen lifestyle have been described for this fungus. Genetically, six avirulence genes are known and one codes for UhAVR1, the only proven avirulence effector identified in smuts to date that triggers complete immunity in barley cultivars carrying resistance gene Ruh1. A prerequisite for resistance breeding is understanding the host targets and molecular function of UhAVR1. Analysis of this effector upon natural infection of barley coleoptiles using teliospores showed that UhAVR1 is expressed during the early stages of fungal infection where it leads to HR triggering in resistant cultivars or performs its virulence function in susceptible cultivars. Fungal secretion of UhAVR1 is directed by its signal peptide and occurs via the BrefeldinA-sensitive ER-Golgi pathway in cell culture away from its host. Transient in planta expression of UhAVR1 in barley and a nonhost, Nicotiana benthamiana, supports a cytosolic localization. Delivery of UhAVR1 via foxtail mosaic virus or Pseudomonas species in both barley and N. benthamiana reveals a role in suppressing components common to both plant systems of Effector- and Pattern-Triggered Immunity, including necrosis triggered by Agrobacterium-delivered cell death inducers.

9.
Environ Microbiol ; 22(7): 2956-2967, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32390310

RESUMO

Reactive oxygen species (ROS) play an important role during host-pathogen interactions and are often an indication of induced host defence responses. In this study, we demonstrate for the first time that Puccinia triticina (Pt) generates ROS, including superoxide, H2 O2 and hydroxyl radicals, during wheat infection. Through pharmacological inhibition, we found that ROS are critical for both Pt urediniospore germination and pathogenic development on wheat. A comparative RNA-Seq analysis of different stages of Pt infection process revealed 291 putative Pt genes associated with the oxidation-reduction process. Thirty-seven of these genes encode known proteins. The expressions of five Pt genes, including PtNoxA, PtNoxB, PtNoxR, PtCat and PtSod, were subsequently verified using RT-qPCR analysis. The results show that the expressions of PtNoxA, PtNoxB, PtNoxR, PtCat and PtSod are up-regulated during urediniospore germination. In comparison, the expressions of PtNoxA, PtNoxB, PtNoxR and PtCat are down-regulated during wheat infection from 12 to 120 h after inoculation (HAI), whereas the expression of PtSod is up-regulated with a peak of expression at 120 HAI. We conclude that ROS are critical for the full virulence of Pt and a coordinate down-regulation of PtNox genes may be important for successful infection in wheat.


Assuntos
Interações Hospedeiro-Patógeno/genética , Puccinia/genética , Puccinia/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Triticum/microbiologia , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Doenças das Plantas/microbiologia , Virulência/genética
10.
Genomics ; 112(5): 3762-3772, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32259573

RESUMO

Erwinia amylovora is a destructive pathogen of Rosaceous plants and an economic concern worldwide. Herein, we report 93 new E. amylovora genomes from North America, Europe, the Mediterranean, and New Zealand. This new genomic information demonstrates the existence of three primary clades of Amygdaloideae (apple and pear) infecting E. amylovora and suggests all three independently originate from North America. The comprehensive sequencing also identified and confirmed the presence of 7 novel plasmids ranging in size from 2.9 to 34.7 kbp. While the function of the novel plasmids is unknown, the plasmids pEAR27, pEAR28, and pEAR35 encoded for type IV secretion systems. The strA-strB gene pair and the K43R point mutation at codon 43 of the rpsL gene have been previously documented to confer streptomycin resistance. Of the sequenced isolates, rpsL-based streptomycin resistance was more common and was found with the highest frequency in the Western North American clade.


Assuntos
Resistência Microbiana a Medicamentos , Erwinia amylovora/genética , Genoma Bacteriano , Filogenia , Plasmídeos , Estreptomicina/farmacologia , Erwinia amylovora/classificação
11.
Phytopathology ; 110(3): 532-543, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31799902

RESUMO

Among the thousands of rust species described, many are known for their devastating effects on their hosts, which include major agriculture crops and trees. Hence, for over a century, these basidiomycete pathogenic fungi have been researched and experimented with. However, due to their biotrophic nature, they are challenging organisms to work with and, needing their hosts for propagation, represent pathosystems that are not easily experimentally accessible. Indeed, efforts to perform genetics have been few and far apart for the rust fungi, though one study performed in the 1940s was famously instrumental in formulating the gene-for-gene hypothesis describing pathogen-host interactions. By taking full advantage of the molecular genetic tools developed in the 1980s, research on many plant pathogenic microbes thrived, yet similar work on the rusts remained very challenging though not without some successes. However, the genomics era brought real breakthrough research for the biotrophic fungi and with innovative experimentation and the use of heterologous systems, molecular genetic analyses over the last 2 decades have significantly advanced our insight into the function of many rust fungus genes and their role in the interaction with their hosts. This has allowed optimizing efforts for resistance breeding and the design and testing of various novel strategies to reduce the devastating diseases they cause.


Assuntos
Basidiomycota , Doenças das Plantas , Fungos , Genômica , Interações Hospedeiro-Patógeno
12.
Proc Natl Acad Sci U S A ; 115(12): 3108-3113, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507212

RESUMO

The centromere DNA locus on a eukaryotic chromosome facilitates faithful chromosome segregation. Despite performing such a conserved function, centromere DNA sequence as well as the organization of sequence elements is rapidly evolving in all forms of eukaryotes. The driving force that facilitates centromere evolution remains an enigma. Here, we studied the evolution of centromeres in closely related species in the fungal phylum of Basidiomycota. Using ChIP-seq analysis of conserved inner kinetochore proteins, we identified centromeres in three closely related Cryptococcus species: two of which are RNAi-proficient, while the other lost functional RNAi. We find that the centromeres in the RNAi-deficient species are significantly shorter than those of the two RNAi-proficient species. While centromeres are LTR retrotransposon-rich in all cases, the RNAi-deficient species lost all full-length retroelements from its centromeres. In addition, centromeres in RNAi-proficient species are associated with a significantly higher level of cytosine DNA modifications compared with those of RNAi-deficient species. Furthermore, when an RNAi-proficient Cryptococcus species and its RNAi-deficient mutants were passaged under similar conditions, the centromere length was found to be occasionally shortened in RNAi mutants. In silico analysis of predicted centromeres in a group of closely related Ustilago species, also belonging to the Basidiomycota, were found to have undergone a similar transition in the centromere length in an RNAi-dependent fashion. Based on the correlation found in two independent basidiomycetous species complexes, we present evidence suggesting that the loss of RNAi and cytosine DNA methylation triggered transposon attrition, which resulted in shortening of centromere length during evolution.


Assuntos
Centrômero/genética , Cryptococcus/genética , DNA Fúngico/genética , Evolução Molecular , Interferência de RNA , Sequência de Bases , Cromossomos Fúngicos/genética
13.
Plant Biotechnol J ; 16(5): 1013-1023, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28941315

RESUMO

Leaf rust, caused by the pathogenic fungus Puccinia triticina (Pt), is one of the most serious biotic threats to sustainable wheat production worldwide. This obligate biotrophic pathogen is prevalent worldwide and is known for rapid adaptive evolution to overcome resistant wheat varieties. Novel disease control approaches are therefore required to minimize the yield losses caused by Pt. Having shown previously the potential of host-delivered RNA interference (HD-RNAi) in functional screening of Pt genes involved in pathogenesis, we here evaluated the use of this technology in transgenic wheat plants as a method to achieve protection against wheat leaf rust (WLR) infection. Stable expression of hairpin RNAi constructs with sequence homology to Pt MAP-kinase (PtMAPK1) or a cyclophilin (PtCYC1) encoding gene in susceptible wheat plants showed efficient silencing of the corresponding genes in the interacting fungus resulting in disease resistance throughout the T2 generation. Inhibition of Pt proliferation in transgenic lines by in planta-induced RNAi was associated with significant reduction in target fungal transcript abundance and reduced fungal biomass accumulation in highly resistant plants. Disease protection was correlated with the presence of siRNA molecules specific to targeted fungal genes in the transgenic lines harbouring the complementary HD-RNAi construct. This work demonstrates that generating transgenic wheat plants expressing RNAi-inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust-resistant crops.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Genes Essenciais/genética , Doenças das Plantas/imunologia , RNA Interferente Pequeno/genética , Triticum/genética , Basidiomycota/genética , Expressão Gênica , Genes Fúngicos/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Interferência de RNA , Triticum/imunologia , Triticum/microbiologia
14.
Methods Mol Biol ; 1659: 115-124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28856645

RESUMO

Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.


Assuntos
Basidiomycota/genética , Grão Comestível/microbiologia , Inativação Gênica , Genes Fúngicos , Genômica/métodos , Doenças das Plantas/microbiologia , Triticum/microbiologia , Basidiomycota/virologia , Grão Comestível/virologia , Vetores Genéticos/genética , Vírus de Plantas/genética , Triticum/virologia
15.
Microbiol Spectr ; 5(3)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28597825

RESUMO

Fungi of the Basidiomycota, representing major pathogen lineages and mushroom-forming species, exhibit diverse means to achieve sexual reproduction, with particularly varied mechanisms to determine compatibilities of haploid mating partners. For species that require mating between distinct genotypes, discrimination is usually based on both the reciprocal exchange of diffusible mating pheromones, rather than sexes, and the interactions of homeodomain protein signals after cell fusion. Both compatibility factors must be heterozygous in the product of mating, and genetic linkage relationships of the mating pheromone/receptor and homeodomain genes largely determine the complex patterns of mating-type variation. Independent segregation of the two compatibility factors can create four haploid mating genotypes from meiosis, referred to as tetrapolarity. This condition is thought to be ancestral to the basidiomycetes. Alternatively, cosegregation by linkage of the two mating factors, or in some cases the absence of the pheromone-based discrimination, yields only two mating types from meiosis, referred to as bipolarity. Several species are now known to have large and highly rearranged chromosomal regions linked to mating-type genes. At the population level, polymorphism of the mating-type genes is an exceptional aspect of some basidiomycete fungi, where selection under outcrossing for rare, intercompatible allelic variants is thought to be responsible for numbers of mating types that may reach several thousand. Advances in genome sequencing and assembly are yielding new insights by comparative approaches among and within basidiomycete species, with the promise to resolve the evolutionary origins and dynamics of mating compatibility genetics in this major eukaryotic lineage.


Assuntos
Basidiomycota/genética , Basidiomycota/fisiologia , Fungos/genética , Genes Fúngicos Tipo Acasalamento/genética , Genes Fúngicos Tipo Acasalamento/fisiologia , Alelos , Basidiomycota/classificação , Ciclo Celular/genética , Ciclo Celular/fisiologia , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Fungos/fisiologia , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Genoma Fúngico , Genótipo , Haploidia , Meiose , Feromônios , Filogenia , Ploidias , Reprodução , Sexo , Fatores de Transcrição
16.
G3 (Bethesda) ; 7(2): 361-376, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-27913634

RESUMO

Three members of the Puccinia genus, Pucciniatriticina (Pt), Pstriiformis f.sp. tritici (Pst), and Pgraminis f.sp. tritici (Pgt), cause the most common and often most significant foliar diseases of wheat. While similar in biology and life cycle, each species is uniquely adapted and specialized. The genomes of Pt and Pst were sequenced and compared to that of Pgt to identify common and distinguishing gene content, to determine gene variation among wheat rust pathogens, other rust fungi, and basidiomycetes, and to identify genes of significance for infection. Pt had the largest genome of the three, estimated at 135 Mb with expansion due to mobile elements and repeats encompassing 50.9% of contig bases; in comparison, repeats occupy 31.5% for Pst and 36.5% for Pgt We find all three genomes are highly heterozygous, with Pst [5.97 single nucleotide polymorphisms (SNPs)/kb] nearly twice the level detected in Pt (2.57 SNPs/kb) and that previously reported for Pgt Of 1358 predicted effectors in Pt, 784 were found expressed across diverse life cycle stages including the sexual stage. Comparison to related fungi highlighted the expansion of gene families involved in transcriptional regulation and nucleotide binding, protein modification, and carbohydrate degradation enzymes. Two allelic homeodomain pairs, HD1 and HD2, were identified in each dikaryotic Puccinia species along with three pheromone receptor (STE3) mating-type genes, two of which are likely representing allelic specificities. The HD proteins were active in a heterologous Ustilago maydis mating assay and host-induced gene silencing (HIGS) of the HD and STE3 alleles reduced wheat host infection.


Assuntos
Basidiomycota/genética , Genoma Fúngico , Análise de Sequência de DNA , Triticum/microbiologia , Basidiomycota/patogenicidade , Genes Fúngicos Tipo Acasalamento/genética , Estágios do Ciclo de Vida/genética , Anotação de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Receptores de Feromônios/genética , Triticum/genética , Triticum/crescimento & desenvolvimento
17.
Microbiology (Reading) ; 162(6): 1009-1022, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27027300

RESUMO

Trehalose is an important disaccharide that can be found in bacteria, fungi, invertebrates and plants. In some Ascomycota fungal plant pathogens, the role of trehalose was recently studied and shown to be important for conferring protection against several environmental stresses and for virulence. In most of the fungi studied, two enzymes are involved in the synthesis of trehalose: trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2). To study the role of trehalose in virulence and stress response in the Basidiomycota maize pathogen Ustilago maydis, Δtps2 deletion mutants were constructed. These mutants did not produce trehalose as confirmed by HPLC analysis, showing that the single gene disruption impaired its biosynthesis. The mutants displayed increased sensitivity to oxidative, heat, acid, ionic and osmotic stresses as compared to the wild-type strains. Virulence of Δtps2 mutants to maize plants was extremely reduced compared to wild-type strains, possibly due to reduced capability to deal with the hostile host environment. The phenotypic traits displayed by Δtps2 strains were fully restored to wild-type levels when complemented with the endogenous UmTPS2 gene, or a chimeric construct having the Saccharomyces cerevisiae TPS2 ORF. This report demonstrates the presence of a single biosynthetic pathway for trehalose, and its importance for virulence in this model Basidiomycota plant pathogen.


Assuntos
Resposta ao Choque Térmico/genética , Estresse Oxidativo/genética , Monoéster Fosfórico Hidrolases/genética , Saccharomyces cerevisiae/genética , Trealose/metabolismo , Ustilago/patogenicidade , Deleção de Genes , Glucosiltransferases , Ustilago/genética , Ustilago/metabolismo , Virulência/genética , Zea mays/microbiologia
19.
Methods Mol Biol ; 1287: 179-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25740365

RESUMO

With the rapid growth of genomic information, there is an increasing demand for efficient analysis tools to study the function of predicted genes coded in genomes. Agroinfiltration, the delivery of gene constructs into plant cells by Agrobacterium tumefaciens infiltrated into leaves, is one such versatile, simple, and rapid technique that is increasingly used for transient gene expression assay in plants. In this chapter, we focus on the use of agroinfiltration as a functional genomics research tool in molecular plant pathology. Specifically, we describe in detail its use in expressing phytopathogenic fungal gene sequences in a host plant to induce RNA silencing of corresponding genes inside the pathogen, a method which has been termed host-induced gene silencing (HIGS). We target the fungal pathogen Puccinia triticina which causes leaf rust on its wheat host, but the method is applicable to a variety of pathosystems.


Assuntos
Agrobacterium tumefaciens/fisiologia , Basidiomycota/fisiologia , Proteínas Fúngicas/genética , Genômica/métodos , Triticum/microbiologia , Agrobacterium tumefaciens/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Vetores Genéticos/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Proteínas Recombinantes/genética
20.
Methods Mol Biol ; 1227: 199-215, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25239747

RESUMO

The genetic transformation of certain organisms, required for gene function analysis or complementation, is often not very efficient, especially when dealing with large gene constructs or genomic fragments. We have adapted the natural DNA transfer mechanism from the soil pathogenic bacterium Agrobacterium tumefaciens, to deliver intact large DNA constructs to basidiomycete fungi of the genus Ustilago where they stably integrated into their genome. To this end, Bacterial Artificial Chromosome (BAC) clones containing large fungal genomic DNA fragments were converted via a Lambda phage-based recombineering step to Agrobacterium transfer-competent binary vectors (BIBACs) with a Ustilago-specific selection marker. The fungal genomic DNA fragment was subsequently successfully delivered as T-DNA through Agrobacterium-mediated transformation into Ustilago species where an intact copy stably integrated into the genome. By modifying the recombineering vector, this method can theoretically be adapted for many different fungi.


Assuntos
Agrobacterium tumefaciens/genética , DNA Fúngico/genética , Engenharia Genética/métodos , Genoma Fúngico , Plasmídeos/metabolismo , Ustilago/genética , Agrobacterium tumefaciens/metabolismo , Cromossomos Artificiais Bacterianos/química , Cromossomos Artificiais Bacterianos/metabolismo , Clonagem Molecular , DNA Fúngico/metabolismo , Eletroporação , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Recombinação Homóloga , Plasmídeos/química , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...