Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37623124

RESUMO

Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties that are conducive to imaging and tracking. This paper presents a comprehensive analysis of the synthesis and characterization of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels, as well as their biomedical applications, such as drug delivery, imaging, and tissue engineering. In this discourse, we deliberate upon the merits and obstacles linked to these substances, encompassing biocompatibility, drug encapsulation, optical characteristics, and scalability. The present study aims to provide an overall evaluation of the potential of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels for biomedical applications. Additionally, emerging trends and future directions for research in this area are highlighted.

2.
Adv Exp Med Biol ; 1424: 233-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486499

RESUMO

In an attempt to develop therapeutic agents to treat Alzheimer's disease, a series of flavonoid analogues were collected, which already had established acetylcholinesterase (AChE) enzyme inhibition activity. For each molecule we also collected biological activity data (Ki). Then, 3D-QSAR (quantitative structure-activity relationship model) was developed which showed acceptable predictive and descriptive capability as represented by standard statistical parameters r2 and q2. This SAR data can explain the key descriptors which can be related to AChE inhibitory activity. Using the QSAR model, pharmacophores were developed based on which, virtual screening was done and a dataset was obtained which loaded as a prediction set to fit the developed QSAR model. Top 10 compounds fitting the QSAR model were subjected to molecular docking. CHEMBL1718051 was found to be the lead compound. This study is offering an example of a computationally-driven tool for prioritisation and discovery of probable AChE inhibitors. Further, in vivo and in vitro testing will show its therapeutic potential.


Assuntos
Inibidores da Colinesterase , Relação Quantitativa Estrutura-Atividade , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo
3.
Adv Exp Med Biol ; 1423: 237-243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525050

RESUMO

Vascular dementia (VaD) accounts to 30% of cases and is predicted as second most common form of dementia after Alzheimer's disease by WHO. Earlier studies reported that plant-derived pentacyclic triterpenoids possess a wide range of pharmacological activities but these compounds are not extensively studied for their neuroprotective potential against VaD. This in silico approach was designed to screen 20 pentacyclic triterpenoid plant compounds against known targets of VaD using Flare software. S-Adenyl homocysteine hydrolase, Acetylcholinesterase, and Butyrylcholinesterase were selected as important VaD targets, and various parameters like intermolecular interaction energies, binding energy, and dock scores were analyzed and compared between selected ligands. Our results showed that Ursolic acid has lowest binding energy when docked with most of the target proteins, and among all 20 pentacyclic triterpenoids studied, only three ligands Betulinic acid, Ambolic acid, and Madecassic acid, showed better binding energy scores, and they can be shortlisted as lead compounds to further study their therapeutic potential against VaD using in vitro and in vivo animal models.


Assuntos
Antineoplásicos , Demência Vascular , Triterpenos , Animais , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/uso terapêutico , Triterpenos Pentacíclicos/química , Demência Vascular/tratamento farmacológico , Acetilcolinesterase , Butirilcolinesterase , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química , Plantas/metabolismo
4.
Molecules ; 27(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889343

RESUMO

The nano-drug delivery system has gained greater acceptability for poorly soluble drugs. Alogliptin (ALG) is a FDA-approved oral anti-hyperglycemic drug that inhibits dipeptidyl peptidase-4. The present study is designed to prepare polymeric ALG nanoparticles (NPs) for the management of diabetes. ALG-NPs were prepared using the nanoprecipitation method and further optimized by Box−Behnken experimental design (BBD). The formulation was optimized by varying the independent variables Eudragit RSPO (A), Tween 20 (B), and sonication time (C), and the effects on the hydrodynamic diameter (Y1) and entrapment efficiency (Y2) were evaluated. The optimized ALG-NPs were further evaluated for in vitro release, intestinal permeation, and pharmacokinetic and anti-diabetic activity. The prepared ALG-NPs show a hydrodynamic diameter of between 272.34 nm and 482.87 nm, and an entrapment efficiency of between 64.43 and 95.21%. The in vitro release data of ALG-NPs reveals a prolonged release pattern (84.52 ± 4.1%) in 24 h. The permeation study results show a 2.35-fold higher permeation flux than pure ALG. ALG-NPs exhibit a significantly (p < 0.05) higher pharmacokinetic profile than pure ALG. They also significantly (p < 0.05) reduce the blood sugar levels as compared to pure ALG. The findings of the study support the application of ALG-entrapped Eudragit RSPO nanoparticles as an alternative carrier for the improvement of therapeutic activity.


Assuntos
Portadores de Fármacos , Nanopartículas , Tamanho da Partícula , Piperidinas , Polímeros , Uracila/análogos & derivados
5.
Molecules ; 27(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566099

RESUMO

Objective: The present study aimed to develop and optimize esomeprazole loaded proniosomes (EZL-PNs) to improve bioavailability and therapeutic efficacy. Method: EZL-PNs formulation was developed by slurry method and optimized by 33 box-Bhekhen statistical design software. Span 60 (surfactant), cholesterol, EZL concentration were taken as independent variables and their effects were evaluated on vesicle size (nm), entrapment efficiency (%, EE) and drug release (%, DR). Furthermore, optimized EZL-PNs (EZL-PNs-opt) formulation was evaluated for ex vivo permeation, pharmacokinetic and ulcer protection activity. Result: The EZL-PNs-opt formulation showed 616 ± 13.21 nm of vesicle size, and 81.21 ± 2.35% of EE. EZL-PNs-opt exhibited negative zeta potential and spherical confirmed scanning electron microscopy. EZL-PNs-opt showed sustained release of EZL (95.07 ± 2.10% in 12 h) than pure EZL dispersion. The ex-vivo gut permeation result exhibited a significantly (p < 0.05) enhanced flux than pure EZL. The in vivo results revealed 4.02-fold enhancement in bioavailability and 61.65% protection in ulcer than pure EZL dispersion (43.82%). Conclusion: Our findings revealed that EZL-PNs formulation could be an alternative delivery system of EZL to enhance oral bioavailability and antiulcer activity.


Assuntos
Esomeprazol , Úlcera , Administração Cutânea , Disponibilidade Biológica , Portadores de Fármacos , Liberação Controlada de Fármacos , Esomeprazol/farmacologia , Humanos , Tamanho da Partícula
6.
Adv Pharm Bull ; 10(3): 379-388, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32665896

RESUMO

Purpose: The present work endeavors to report a systematic approach of developing the lipidic self-nanoemulsifying formulation of olmesartan medoxomil (OMT) on the principles of Quality by Design (QbD). Methods: For preparing the self-nanoemulsifying formulation, a mixture of oil, surfactant and cosurfactant were used as vehicles. The excipients were selected after screening by solubility as well as pseudoternary phase titration studies. Mixture design was adopted for systematic optimization of the composition of nanolipidic formulations, which were evaluated for smaller globule size, stable zeta potential and lower values of polydispersity index. The optimized liquid self-nanoemulsifying formulation was identified using numerical and graphical optimization techniques, followed by validation of the experimental model. Solidification of self-nanoemulsifying formulation was carried out using porous carriers, and then optimized on the basis of oil adsorption potential, powder flow property and drug release performance. Pharmacokinetic study was performed in male Wistar rats for evaluating the drug absorption parameters. All the experimental data obtained were subjected to statistical analysis using oneway ANOVA followed by post hoc analysis using Student's t test. Results: The optimized liquid self-nanoemulsifying formulation showed globule size <100 nm, emulsification efficiency <5 minutes andin vitro drug release >85% within in 30 minutes. Further, the solid SNEDDS formulation was effectively formulated using Neusilin US2 with maximum oil adsorption capacity and good micromeritic properties. Pharmacokinetic evaluation indicated 4 to 5-folds increase (P <0.05) in the values of Cmax, AUC, and reduction in Tmax from the nanoformulations vis-à-vis the marketed formulation. Conclusion: Overall, the developed nanolipidic formulation of olmesartan indicated superior efficacy in augmenting the drug dissolution and absorption performance.

7.
Adv Exp Med Biol ; 1195: 1-11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468451

RESUMO

Parkinson's disease (PD) is a major cause of morbidity and mortality among older individuals. Several researchers have suggested that iron chelators which cross the blood-brain barrier (BBB) might have clinical efficacy in treating PD. Therefore, efforts are made not only in order to improve the effect of L-dopa but also to introduce drugs which provide anti-parkinsonian and neuroprotective effects. In this study, quercetin, a flavonoid, exhibited noticeable neuroprotective effects via iron induced-oxidative stress-dependent apoptotic pathways. Our results suggested that quercetin significantly decreased the catalepsy and exhibited neuroprotective effects in rotenone-induced Parkinson. A model of rotenone-induced Parkinsonism in rats produced the decrease in glutathione, SOD, catalase, and serum iron concentration and the increase in H2O2 and lipid peroxidation activity. Quercetin efficiently halted the deleterious toxic effects of L-dopa, revealing normalization of catalepsy and rotarod score, in addition to amelioration of neurochemical parameters, indicating benefit of both symptomatic and neuroprotective therapies. In silico molecular docking studies have also shown that quercetin could be an ideal potential drug target for aromatic L-amino acid decarboxylase and human catechol-O-methyltransferase. In conclusion, quercetin possesses strong iron-chelating abilities and could be recommended as a disease-modifying therapy when administered in combination with L-dopa, early on in the course of Parkinson's disease.


Assuntos
Antiparkinsonianos/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Quercetina/uso terapêutico , Animais , Antiparkinsonianos/farmacologia , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Catecol O-Metiltransferase/metabolismo , Humanos , Levodopa/efeitos adversos , Levodopa/antagonistas & inibidores , Simulação de Acoplamento Molecular , Quercetina/farmacologia
8.
J Liposome Res ; 30(4): 377-387, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31412744

RESUMO

The present study was designed with an aim to develop and optimize naproxen proniosomes (NAPRNs) using Box-Behnken Design (BBD). The formulation was optimized using three independent variables [maltodextrin (X1), surfactant concentration (X2) and drug concentration (X3)] at three different levels (low, medium and high). The prepared fifteen formulations were evaluated for drug entrapment efficiency, vesicle size and transdermal flux to select the optimized naproxen niosomes (NAPRNopt). The developed NAPRNs formulations showed the nano-size vesicle (218-417 nm) and high encapsulation efficiency (60.48-92.48%) with high flux value (23.17-27.37 µg/cm2/h). The formulation NAPRNopt has shown the vesicle size of 376.12 ± 4.12 nm with entrapment efficiency 86.43 ± 3.63% and transdermal flux of 27.56 ± 1.43 µg/cm2/h. The SEM study revealed the formulation NAPRNopt showed irregular surface morphology of niosomes. The formulation NAPRNopt gel showed biphasic release behaviour as an initial fast release and later slower release with the Higuchi release mechanism. The anti-inflammatory study results showed a better effect than the standard NAP gel in the rat model.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipossomos/metabolismo , Naproxeno/metabolismo , Absorção Cutânea , Pele/metabolismo , Administração Cutânea , Algoritmos , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Carragenina , Liberação Controlada de Fármacos , Edema/induzido quimicamente , Edema/prevenção & controle , Cinética , Lipossomos/farmacocinética , Lipossomos/ultraestrutura , Microscopia Eletrônica de Varredura , Naproxeno/farmacocinética , Tamanho da Partícula , Ratos
9.
Bioorg Chem ; 92: 103120, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31525527

RESUMO

A novel pharmacophore with theophylline and acetylene moieties was constructed by using a fragment-based drug design and a series of twenty theophylline containing acetylene conjugates were designed and synthesized, and all the compounds were evaluated by enzyme-based in vitro α-amylase inhibition activity. The in vitro evaluation revealed that most of the compounds displayed good inhibitory activities, and among them nine analogs 13-15, 20, 21 and 24-27 were exhibited more or nearly as equipotent inhibitory activity with IC50 values 1.11 ±â€¯0.07, 1.14 ±â€¯0.17, 1.07 ±â€¯0.01 and 1.21 ±â€¯0.03, 1.33 ±â€¯0.09, 1.17 ±â€¯0.01, 1.05 ±â€¯0.02, 1.61 ±â€¯0.04, 1.02 ±â€¯0.03 µM respectively, as compared with standard, acarbose 1.37 ±â€¯0.26 µM. Further, molecular docking simulation studies were done to identify the interactions and binding mode of synthesized analogs at binding site of α-amylase enzyme (PBD ID: 4GQR). Among the synthesized analogs, two compounds 25 and 27 were selected on the basis of α-amylase inhibition activity and evaluated for in vivo anti-diabetic activity by High Fat Diet-Streptozotocin (HFD-STZ) model in normal rats. At the dose of 10 mg/kg, bw, po these compounds have significantly reduced Plasma Glucose level in rats as compared to pioglitazone. The anti-diabetic activity results showed that the animal treated with the compounds 25 and 27 could better reverse and control the progression of the disease compared to the standard.


Assuntos
Acetileno/química , Inibidores de Glicosídeo Hidrolases/síntese química , Hipoglicemiantes/síntese química , Teofilina/síntese química , alfa-Amilases/antagonistas & inibidores , Acarbose/normas , Animais , Sítios de Ligação , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Avaliação Pré-Clínica de Medicamentos , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Pioglitazona/farmacologia , Ligação Proteica , Ratos , Estreptozocina/metabolismo , Relação Estrutura-Atividade , Teofilina/farmacologia
10.
Mater Sci Eng C Mater Biol Appl ; 75: 1496-1505, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415443

RESUMO

The study aims at formulation and characterization of three months parenteral risperidone loaded polymeric microspheres (p-RLPMs) as a sustained delivery system and established their in vitro and in vivo assessments. The p-RLPMs formulations were prepared by solvent extraction and diffusion method. The optimized p-RLPMs (batch RPLGA-1) formulation demonstrated favorable different physicochemical properties such as mean particle size (104±5.34µm), percent porosity (44.56±3.11%) and percent drug loading (38.42±2.67%). The physical state characterization, Fourier transformed infrared spectroscopy analysis showed no changes in the chemical structure of risperidone (RPD) in the batch RPLGA-1 formulation and differential scanning calorimetry study confirmed, pure RPD retained its crystallinity in the batch RPLGA-1 formulation. The SEM micrographs of the all p-RLPMs formulations revealed the irregular shapes and indentations. The GC/MS results showed that the residual organic solvent content in the batch RPLGA-1 formulation was below the limits. Pharmacokinetic parameters revealed that optimized RPLGA-1 formulation exhibited an initial burst followed by an excellent sustained release as compared to pure RPD as well as other formulations. Furthermore, in vivo studies of the batch, RPLGA-1 formulation showed an antipsychotic effect that was significantly prolonged over that of pure RPD solution for up to 72h with fewer extrapyramidal side effects. Thus, results of this study prove the suitability of using poly(lactic-co-glycolic acid) copolymer to develop sustained release p-RLPMs formulations that can tailor in vivo behavior and enhance the pharmacological effectiveness of the RPD.


Assuntos
Ácido Láctico , Microesferas , Ácido Poliglicólico , Risperidona , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Masculino , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Risperidona/química , Risperidona/farmacocinética , Risperidona/farmacologia
11.
J Microencapsul ; 33(6): 544-553, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27568868

RESUMO

CONTEXT: The oral delivery of risperidone encounters a number of problems, such as pH dependent solubility and low bioavailability, due to its lipophilicity and aqueous insolubility. OBJECTIVE: To improve the solubility, dissolution and intestinal permeation thereby bioavailability of risperidone through a novel self-nanoemulsifying powder (SNEP) formulations. MATERIALS AND METHODS: Oleic acid, Tween® 20, PEG 600 and Aerosil® 200 were chosen as oil, surfactant, co-surfactant and carrier, respectively from solubility and emulsification studies. Ternary phase diagram was constructed to determine emulsifying region. RESULTS AND DISCUSSION: The Z-average and polydispersity Index of developed formulation was 83.1 nm and 0.306, respectively. Ex vivo permeation studies on isolated rat intestine indicated that the amount of risperidone permeated from SNEP formulation was increased around 4- and 1.8-fold than that of pure drug and marketed formulation, respectively. CONCLUSION: This developed SNEP formulations can be regarded as novel and commercially feasible alternative to the current risperidone formulations.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Risperidona , Administração Oral , Animais , Emulsões , Masculino , Ácido Oleico/química , Ácido Oleico/farmacocinética , Ácido Oleico/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Polissorbatos/química , Polissorbatos/farmacocinética , Polissorbatos/farmacologia , Pós , Ratos , Ratos Wistar , Risperidona/química , Risperidona/farmacocinética , Risperidona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...