Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(1): e13087, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36747920

RESUMO

Cardiovascular disorders such as heart failure are leading causes of mortality. Patient stratification via identification of novel biomarkers could improve management of cardiovascular diseases of complex etiologies. Long-noncoding RNAs (lncRNAs) are highly tissue-specific in nature and have emerged as important biomarkers in human diseases. In this study, we aimed to identify cardiac-enriched lncRNAs as potential biomarkers for cardiovascular conditions. Deep RNA sequencing and quantitative PCR identified differentially expressed lncRNAs between failing and non-failing hearts. An independent dataset was used to evaluate the enrichment of lncRNAs in normal hearts. We identified a panel of 2906 lncRNAs, named FIMICS, that were either cardiac-enriched or differentially expressed between failing and non-failing hearts. Expression of lncRNAs in blood samples differentiated patients with myocarditis and acute myocardial infarction. We hereby present the FIMICS panel, a readily available tool to provide insights into cardiovascular pathologies and which could be helpful for diagnosis, monitoring and prognosis purposes.

2.
Sci Rep ; 12(1): 20048, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414650

RESUMO

Coronavirus disease-2019 (COVID-19) can be asymptomatic or lead to a wide symptom spectrum, including multi-organ damage and death. Here, we explored the potential of microRNAs in delineating patient condition and predicting clinical outcome. Plasma microRNA profiling of hospitalized COVID-19 patients showed that miR-144-3p was dynamically regulated in response to COVID-19. Thus, we further investigated the biomarker potential of miR-144-3p measured at admission in 179 COVID-19 patients and 29 healthy controls recruited in three centers. In hospitalized patients, circulating miR-144-3p levels discriminated between non-critical and critical illness (AUCmiR-144-3p = 0.71; p = 0.0006), acting also as mortality predictor (AUCmiR-144-3p = 0.67; p = 0.004). In non-hospitalized patients, plasma miR-144-3p levels discriminated mild from moderate disease (AUCmiR-144-3p = 0.67; p = 0.03). Uncontrolled release of pro-inflammatory cytokines can lead to clinical deterioration. Thus, we explored the added value of a miR-144/cytokine combined analysis in the assessment of hospitalized COVID-19 patients. A miR-144-3p/Epidermal Growth Factor (EGF) combined score discriminated between non-critical and critical hospitalized patients (AUCmiR-144-3p/EGF = 0.81; p < 0.0001); moreover, a miR-144-3p/Interleukin-10 (IL-10) score discriminated survivors from nonsurvivors (AUCmiR-144-3p/IL-10 = 0.83; p < 0.0001). In conclusion, circulating miR-144-3p, possibly in combination with IL-10 or EGF, emerges as a noninvasive tool for early risk-based stratification and mortality prediction in COVID-19.


Assuntos
COVID-19 , MicroRNAs , Humanos , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/mortalidade , Fator de Crescimento Epidérmico , Interleucina-10 , MicroRNAs/sangue
3.
Sci Rep ; 11(1): 11049, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040048

RESUMO

The SARS-CoV-2 pandemic has challenged researchers at a global scale. The scientific community's massive response has resulted in a flood of experiments, analyses, hypotheses, and publications, especially in the field of drug repurposing. However, many of the proposed therapeutic compounds obtained from SARS-CoV-2 specific assays are not in agreement and thus demonstrate the need for a singular source of COVID-19 related information from which a rational selection of drug repurposing candidates can be made. In this paper, we present the COVID-19 PHARMACOME, a comprehensive drug-target-mechanism graph generated from a compilation of 10 separate disease maps and sources of experimental data focused on SARS-CoV-2/COVID-19 pathophysiology. By applying our systematic approach, we were able to predict the synergistic effect of specific drug pairs, such as Remdesivir and Thioguanosine or Nelfinavir and Raloxifene, on SARS-CoV-2 infection. Experimental validation of our results demonstrate that our graph can be used to not only explore the involved mechanistic pathways, but also to identify novel combinations of drug repurposing candidates.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos/métodos , SARS-CoV-2/fisiologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , Terapia Combinada , Biologia Computacional , Sinergismo Farmacológico , Quimioterapia Combinada , GTP Fosfo-Hidrolases/uso terapêutico , Humanos , Bases de Conhecimento , Nelfinavir/uso terapêutico , Pandemias , Cloridrato de Raloxifeno/uso terapêutico
4.
Biol Sex Differ ; 12(1): 25, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685490

RESUMO

Thyroid hormone (TH) regulates many functions including metabolism, cell differentiation, and nervous system development. Alteration of thyroid hormone level in the body can lead to nervous system-related problems linked to cognition, visual attention, visual processing, motor skills, language, and memory skills. TH has also been associated with neuropsychiatric disorders including schizophrenia, bipolar disorder, anxiety, and depression. Males and females display sex-specific differences in neuronal signaling. Steroid hormones including testosterone and estrogen are considered to be the prime regulators for programing the neuronal signaling in a male- and female-specific manner. However, other than steroid hormones, TH could also be one of the key signaling molecules to regulate different brain signaling in a male- and female-specific manner. Thyroid-related diseases and neurological diseases show sex-specific incidence; however, the molecular mechanisms behind this are not clear. Hence, it will be very beneficial to understand how TH acts in male and female brains and what are the critical genes and signaling networks. In this review, we have highlighted the role of TH in nervous system regulation and disease outcome and given special emphasis on its sex-specific role in male and female brains. A network model is also presented that provides critical information on TH-regulated genes, signaling, and disease.


Assuntos
Caracteres Sexuais , Encéfalo , Diferenciação Celular , Estrogênios , Feminino , Humanos , Masculino , Hormônios Tireóideos
5.
Bioinformatics ; 37(9): 1332-1334, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976572

RESUMO

SUMMARY: The COVID-19 crisis has elicited a global response by the scientific community that has led to a burst of publications on the pathophysiology of the virus. However, without coordinated efforts to organize this knowledge, it can remain hidden away from individual research groups. By extracting and formalizing this knowledge in a structured and computable form, as in the form of a knowledge graph, researchers can readily reason and analyze this information on a much larger scale. Here, we present the COVID-19 Knowledge Graph, an expansive cause-and-effect network constructed from scientific literature on the new coronavirus that aims to provide a comprehensive view of its pathophysiology. To make this resource available to the research community and facilitate its exploration and analysis, we also implemented a web application and released the KG in multiple standard formats. AVAILABILITY AND IMPLEMENTATION: The COVID-19 Knowledge Graph is publicly available under CC-0 license at https://github.com/covid19kg and https://bikmi.covid19-knowledgespace.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Software , Humanos , Reconhecimento Automatizado de Padrão , Publicações , SARS-CoV-2
6.
Bioinformatics ; 36(24): 5703-5705, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33346828

RESUMO

MOTIVATION: The COVID-19 pandemic has prompted an impressive, worldwide response by the academic community. In order to support text mining approaches as well as data description, linking and harmonization in the context of COVID-19, we have developed an ontology representing major novel coronavirus (SARS-CoV-2) entities. The ontology has a strong scope on chemical entities suited for drug repurposing, as this is a major target of ongoing COVID-19 therapeutic development. RESULTS: The ontology comprises 2270 classes of concepts and 38 987 axioms (2622 logical axioms and 2434 declaration axioms). It depicts the roles of molecular and cellular entities in virus-host interactions and in the virus life cycle, as well as a wide spectrum of medical and epidemiological concepts linked to COVID-19. The performance of the ontology has been tested on Medline and the COVID-19 corpus provided by the Allen Institute. AVAILABILITYAND IMPLEMENTATION: COVID-19 Ontology is released under a Creative Commons 4.0 License and shared via https://github.com/covid-19-ontology/covid-19. The ontology is also deposited in BioPortal at https://bioportal.bioontology.org/ontologies/COVID-19. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

7.
Sci Rep ; 7(1): 12843, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28993630

RESUMO

Retinal degeneration is prominent in Parkinson's disease (PD), a neuromotor disorder associated with aggregation of α-synuclein (α-syn) in the substantia-nigra (SN). Although α-syn is expressed in the neuroretina, absence of prominent aggregates suggests altered function as the likely cause of retinal pathology. We demonstrate that α-syn impairs ferritinophagy, resulting in the accumulation of iron-rich ferritin in the outer retina in-vivo and retinal-pigment-epithelial (RPE) cells in-vitro. Over-expression of Rab1a restores ferritinophagy, suggesting that α-syn impairs lysosomal function by disrupting the trafficking of lysosomal hydrolases. Surprisingly, upregulation of ferritin in RPE cells by exogenous iron in-vitro stimulated the release of ferritin and α-syn in exosomes, suggesting that iron overload due to impaired ferritinophagy or other cause(s) is likely to initiate prion-like spread of α-syn and ferritin, creating retinal iron dyshomeostasis and associated cytotoxicity. Since over-expression of α-syn is a known cause of PD, these results explain the likely cause of PD-associated retinal degeneration.


Assuntos
Autofagia , Ferritinas/metabolismo , Homeostase , Ferro/metabolismo , Doença de Parkinson/metabolismo , Epitélio Pigmentado da Retina/metabolismo , alfa-Sinucleína/metabolismo , Animais , Autofagossomos/metabolismo , Autofagossomos/efeitos da radiação , Autofagia/efeitos da radiação , Exossomos/metabolismo , Humanos , Luz , Lisossomos/metabolismo , Lisossomos/efeitos da radiação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Doença de Parkinson/patologia , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Proteólise/efeitos da radiação , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/efeitos da radiação , Proteínas rab1 de Ligação ao GTP/metabolismo
8.
Sci Rep ; 7(1): 9600, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851903

RESUMO

Prion disease-associated retinal degeneration is attributed to PrP-scrapie (PrPSc), a misfolded isoform of prion protein (PrPC) that accumulates in the neuroretina. However, a lack of temporal and spatial correlation between PrPSc and cytotoxicity suggests the contribution of host factors. We report retinal iron dyshomeostasis as one such factor. PrPC is expressed on the basolateral membrane of retinal-pigment-epithelial (RPE) cells, where it mediates uptake of iron by the neuroretina. Accordingly, the neuroretina of PrP-knock-out mice is iron-deficient. In RPE19 cells, silencing of PrPC decreases ferritin while over-expression upregulates ferritin and divalent-metal-transporter-1 (DMT-1), indicating PrPC-mediated iron uptake through DMT-1. Polarization of RPE19 cells results in upregulation of ferritin by ~10-fold and ß-cleavage of PrPC, the latter likely to block further uptake of iron due to cleavage of the ferrireductase domain. A similar ß-cleavage of PrPC is observed in mouse retinal lysates. Scrapie infection causes PrPSc accumulation and microglial activation, and surprisingly, upregulation of transferrin despite increased levels of ferritin. Notably, detergent-insoluble ferritin accumulates in RPE cells and correlates temporally with microglial activation, not PrPSc accumulation, suggesting that impaired uptake of iron by PrPSc combined with inflammation results in retinal iron-dyshomeostasis, a potentially toxic host response contributing to prion disease-associated pathology.


Assuntos
Ferro/metabolismo , Proteínas Priônicas/metabolismo , Retina/metabolismo , Animais , Transporte Biológico , Cricetinae , Modelos Animais de Doenças , Feminino , Expressão Gênica , Homeostase , Humanos , Camundongos , Camundongos Knockout , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Doenças Priônicas/etiologia , Doenças Priônicas/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/genética , Proteólise
9.
J Alzheimers Dis ; 58(4): 1109-1119, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28550259

RESUMO

A direct correlation between brain iron and Alzheimer's disease (AD) raises questions regarding the transport of non-transferrin-bound iron (NTBI), a toxic but less researched pool of circulating iron that is likely to increase due to pathological and/or iatrogenic systemic iron overload. Here, we compared the distribution of radiolabeled-NTBI (59Fe-NTBI) and transferrin-bound iron (59Fe-Tf) in mouse models of iron overload in the absence or presence of inflammation. Following a short pulse, most of the 59Fe-NTBI was taken up by the liver, followed by the kidney, pancreas, and heart. Notably, a strong signal of 59Fe-NTBI was detected in the brain ventricular system after 2 h, and the brain parenchyma after 24 h. 59Fe-Tf accumulated mainly in the femur and spleen, and was transported to the brain at a much slower rate than 59Fe-NTBI. In the kidney, 59Fe-NTBI was detected in the cortex after 2 h, and outer medulla after 24 hours. Most of the 59Fe-NTBI and 59Fe-Tf from the kidney was reabsorbed; negligible amount was excreted in the urine. Acute inflammation increased the uptake of 59Fe-NTBI by the kidney and brain from 2-24 hours. Chronic inflammation, on the other hand, resulted in sequestration of iron in the liver and kidney, reducing its transport to the brain. These observations provide direct evidence for the transport of NTBI to the brain, and reveal a complex interplay between inflammation and brain iron homeostasis. Further studies are necessary to determine whether transient increase in NTBI due to systemic iron overload is a risk factor for AD.


Assuntos
Encéfalo/metabolismo , Ferro/metabolismo , Transferrina/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hepcidinas/genética , Hepcidinas/metabolismo , Radioisótopos de Ferro/farmacocinética , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Miocárdio/química , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos , Transferrina/genética
10.
Biosystems ; 150: 46-51, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27587340

RESUMO

Aggregation prone Huntingtin (Htt) protein and its aberrations, causing protein misfolding, have been the prototype of intense research for several decades. Misfolded aggregates or oligomers of different sizes not only deregulate the homeostasis, cellular machinery also counterbalances the effects at least at the initial stages, till the balance tilts towards toxicity and degeneration. In this paper, we combine experimental approaches with system based computational modeling to decipher the molecular mechanisms as well as the hidden dynamics leading to neuronal death in HD. We built an abstracted Boolean gate based electronic circuit that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, at the initial stages of Htt aggregate formation, individual changes in different protein levels and their interactions in cascade constitute the Grb2-pERK-Foxd3 feedback loop that is sufficient to create Hill-like sensitivity and prevent aggregation to the extent till mutant Htt (mHtt) aggregates become predominant in the cell when they spatially isolate the homeostatic reaction mechanism.


Assuntos
Retroalimentação Fisiológica , Redes Reguladoras de Genes/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Doenças Neurodegenerativas/genética , Linhagem Celular Tumoral , Retroalimentação Fisiológica/fisiologia , Humanos , Doença de Huntington/patologia , Doenças Neurodegenerativas/patologia
11.
Free Radic Biol Med ; 97: 292-306, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27343690

RESUMO

Aggregation of α-synuclein (α-syn) in neurons of the substantia nigra is diagnostic of Parkinson's disease (PD), a neuro-motor disorder with prominent visual symptoms. Here, we demonstrate that α-syn, the principal protein involved in the pathogenesis of PD, is expressed widely in the neuroretina, and facilitates the uptake of transferrin-bound iron (Tf-Fe) by retinal pigment epithelial (RPE) cells that form the outer blood-retinal barrier. Absence of α-syn in knock-out mice (α-syn(-/-)) resulted in down-regulation of ferritin in the neuroretina, indicating depletion of cellular iron stores. A similar phenotype of iron deficiency was observed in the spleen, femur, and brain tissue of α-syn(-)(/-) mice, organs that utilize mainly Tf-Fe for their metabolic needs. The liver and kidney, organs that take up significant amounts of non-Tf-bound iron (NTBI), showed minimal change. Evaluation of the underlying mechanism in the human RPE47 cell line suggested a prominent role of α-syn in the uptake of Tf-Fe by modulating the endocytosis and recycling of transferrin (Tf)/transferrin-receptor (TfR) complex. Down-regulation of α-syn in RPE cells by RNAi resulted in the accumulation of Tf/TfR complex in common recycling endosomes (CREs), indicating disruption of recycling to the plasma membrane. Over-expression of exogenous α-syn in RPE cells, on the other hand, up-regulated ferritin and TfR expression. Interestingly, exposure to exogenous iron increased membrane association and co-localization of α-syn with TfR, supporting its role in iron uptake by the Tf/TfR complex. Together with our observations indicating basolateral expression of α-syn and TfR on RPE cells in vivo, this study reveals a novel function of α-syn in the uptake of Tf-Fe by the neuroretina. It is likely that retinal iron dyshomeostasis due to impaired or altered function of α-syn contributes to the visual symptoms associated with PD.


Assuntos
Ferro/metabolismo , Retina/metabolismo , Transferrina/metabolismo , alfa-Sinucleína/fisiologia , Animais , Homeostase , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Doença de Parkinson , Retina/patologia
12.
Eur J Cell Biol ; 95(6-7): 182-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27067261

RESUMO

To decipher the function(s) of HYPK, a huntingtin (HTT)-interacting protein with chaperone-like activity, we had previously identified 36 novel interacting partners of HYPK. Another 13 proteins were known earlier to be associated with HYPK. On the basis of analysis of the interacting partners of HYPK, it has been shown that HYPK may participate in diverse cellular functions relevant to Huntington's disease. In the present study, we identified additional 5 proteins by co-immunoprecipitation and co-localization. As of now we have 54 primary interactors of HYPK. From the database we collected 1026 unique proteins (secondary interactors) interacting with these 54 primary HYPK interacting partners. We observed that 10 primary and 91 secondary interacting proteins of HYPK are associated with two types of autophagy processes. We next tested the hypothesis that the hub, HYPK, might itself be involved in autophagy. Using mouse striatal STHdh(Q7)/Hdh(Q7) cell lines, we observed that over expression of HYPK significantly increased background cellular autophagy, while knock down of endogenous HYPK decreased the autophagy level as detected by altered LC3I conversion, BECN1 expression, cleavage of GFP from LC3-GFP, ATG5-ATG12 conjugate formation and expression of transcription factors like Tfeb, Srebp2 and Zkscan3. This result shows that HYPK, possibly with its interacting partners, induces autophagy. We further observed that N-terminal mutant HTT reduced the cellular levels of LC3II and BECN1, which could be recovered significantly upon over expression of HYPK in these cells. This result further confirms that HYPK could also be involved in clearing mutant HTT aggregates by augmenting autophagy pathway.


Assuntos
Proteínas de Transporte/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Proteínas de Transporte/genética , Técnicas de Silenciamento de Genes , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos
13.
Prion ; 9(6): 420-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26689487

RESUMO

Converging observations from disparate lines of inquiry are beginning to clarify the cause of brain iron dyshomeostasis in sporadic Creutzfeldt-Jakob disease (sCJD), a neurodegenerative condition associated with the conversion of prion protein (PrP(C)), a plasma membrane glycoprotein, from α-helical to a ß-sheet rich PrP-scrapie (PrP(Sc)) isoform. Biochemical evidence indicates that PrP(C) facilitates cellular iron uptake by functioning as a membrane-bound ferrireductase (FR), an activity necessary for the transport of iron across biological membranes through metal transporters. An entirely different experimental approach reveals an evolutionary link between PrP(C) and the Zrt, Irt-like protein (ZIP) family, a group of proteins involved in the transport of zinc, iron, and manganese across the plasma membrane. Close physical proximity of PrP(C) with certain members of the ZIP family on the plasma membrane and increased uptake of extracellular iron by cells that co-express PrP(C) and ZIP14 suggest that PrP(C) functions as a FR partner for certain members of this family. The connection between PrP(C) and ZIP proteins therefore extends beyond common ancestry to that of functional cooperation. Here, we summarize evidence supporting the facilitative role of PrP(C) in cellular iron uptake, and implications of this activity on iron metabolism in sCJD brains.


Assuntos
Ferro/metabolismo , Príons/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , FMN Redutase/química , FMN Redutase/metabolismo , Humanos , Príons/química , Isoformas de Proteínas , Proteínas Repressoras/química
14.
Neurosci Res ; 87: 77-83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25041730

RESUMO

Huntington's disease (HD) is caused due to expansion of CAG repeats in the gene huntingtin (Htt). Adaptor protein Grb2, involved in Ras-MAP kinase pathway, is a known interactor of Htt. Mutant Htt-Grb2 interaction reduces Ras-MAPK signaling in HD models. In normal cells Grb2 forms Grb2-Sos1-Gab1 complex through its N-SH3 and C-SH3 domains respectively, essential for sustained activation of Ras. We found that C-SH3 of Grb2 mediates the interaction with mutant Htt and this interaction being stronger could replace Gab1, with mutant Htt becoming the preferred partner. This would have immense effect on downstream signaling events.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Adaptadora GRB2/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas do Tecido Nervoso/metabolismo , Domínios de Homologia de src , Animais , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Proteína Huntingtina , Camundongos , Dados de Sequência Molecular , Ligação Proteica
15.
PLoS One ; 8(10): e76792, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116161

RESUMO

Growth factor receptor protein binding protein 2 (Grb2) is known to be associated with intracellular growth and proliferation related signaling cascades. Huntingtin (Htt), a ubiquitously expressed protein, when mutated, forms toxic intracellular aggregates - the hallmark of Huntington's disease (HD). We observed an elevated expression of Grb2 in neuronal cells in animal and cell models of HD. Grb2 overexpression was predominantly regulated by the transcription factor Forkhead Box D3 (Foxd3). Exogenous expression of Grb2 also reduced aggregation of mutant Htt in Neuro2A cells. Grb2 is also known to interact with Htt, depending on epidermal growth factor receptor (EGFR) activation. Grb2- mutant Htt interaction in the contrary, took place in vesicular structures, independent of EGFR activation that eventually merged with autophagosomes and activated the autophagy machinery helping in autophagosome and lysosome fusion. Grb2, with its emerging dual role, holds promise for a survival mechanism for HD.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Animais , Autofagia/genética , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Proteína Adaptadora GRB2/genética , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Microscopia Confocal , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fagossomos/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...