Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pers Ubiquitous Comput ; : 1-20, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32837500

RESUMO

Bluetooth (BT) data has been extensively used for recognizing social patterns and inferring social networks, as BT is widely present in everyday technological devices. However, even though collecting BT data is subject to random noise and may result in substantial measurement errors, there is an absence of rigorous procedures for validating the quality of the inferred BT social networks. This paper presents a methodology for inferring and validating BT-based social networks based on parameter optimization algorithm and social network analysis (SNA). The algorithm performs edge inference in a brute-force search over a given BT data set, for deriving optimal BT social networks by validating them with predefined ground truth (GT) networks. The algorithm seeks to optimize a set of parameters, predefined considering some reliability challenges associated to the BT technology itself. The outcomes show that optimizing the parameters can reduce the number of BT data false positives or generate BT networks with the minimum amount of BT data observations. The subsequent SNA shows that the inferred BT social networks are unable to reproduce some network characteristics present in the corresponding GT networks. Finally, the generalizability of the proposed methodology is demonstrated by applying the algorithm on external BT data sets, while obtaining comparable results.

2.
Bioinformatics ; 25(16): 2049-56, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19515963

RESUMO

MOTIVATION: Understanding the processes involved in multi-cellular pattern formation is a central problem of developmental biology, hopefully leading to many new insights, e.g. in the treatment of various diseases. Defining suitable computational techniques for development modelling, able to perform in silico simulation experiments, is an open and challenging problem. RESULTS: Previously, we proposed a coarse-grained, quantitative approach based on the basic Petri net formalism, to mimic the behaviour of the biological processes during multicellular differentiation. Here, we apply our modelling approach to the well-studied process of Caenorhabditis elegans vulval development. We show that our model correctly reproduces a large set of in vivo experiments with statistical accuracy. It also generates gene expression time series in accordance with recent biological evidence. Finally, we modelled the role of microRNA mir-61 during vulval development and predict its contribution in stabilizing cell pattern formation.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Diferenciação Celular , Simulação por Computador , Animais , Padronização Corporal , Biologia Computacional/métodos , Feminino , MicroRNAs/metabolismo , Organogênese , Vulva/citologia , Vulva/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...