Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Dyn ; 252(8): 1113-1129, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883224

RESUMO

BACKGROUND: Microglia are long-lived cells that constantly monitor their microenvironment. To accomplish this task, they constantly change their morphology both in the short and long term under physiological conditions. This makes the process of quantifying physiological microglial morphology difficult. RESULTS: By using a semi-manual and a semi-automatic method to assess fine changes in cortical microglia morphology, we were able to quantify microglia changes in number, surveillance and branch tree starting from the fifth postnatal day to 2 years of life. We were able to identify a fluctuating behavior of most analyzed parameters characterized by a rapid cellular maturation, followed by a long period of relative stable morphology during the adult life with a final convergence to an aged phenotype. Detailed cellular arborization analysis revealed age-induced differences in microglia morphology, with mean branch length and the number of terminal processes changing constantly over time. CONCLUSIONS: Our study provides insight into microglia morphology changes across lifespan under physiological conditions. We were able to highlight, that due to the dynamic nature of microglia several morphological parameters are needed to establish the physiological state of these cells.


Assuntos
Microglia , Córtex Somatossensorial , Longevidade , Fenótipo
2.
J Clin Med ; 10(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802786

RESUMO

As the average age and life expectancy increases, the incidence of both acute and chronic central nervous system (CNS) pathologies will increase. Understanding mechanisms underlying neuroinflammation as the common feature of any neurodegenerative pathology, we can exploit the pharmacology of cell specific ion channels to improve the outcome of many CNS diseases. As the main cellular player of neuroinflammation, microglia play a central role in this process. Although microglia are considered non-excitable cells, they express a variety of ion channels under both physiological and pathological conditions that seem to be involved in a plethora of cellular processes. Here, we discuss the impact of modulating microglia voltage-gated, potential transient receptor, chloride and proton channels on microglial proliferation, migration, and phagocytosis in neurodegenerative diseases.

3.
Microsc Res Tech ; 84(3): 422-431, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33009699

RESUMO

Worldwide elderly traumatic brain injury (TBI) patients tend to become an increasing burden to the society. Thus, a faster and less expensive way of evaluating TBI victims is needed. In the present study we investigated if optical coherence tomography (OCT) could be used as such a method. By using an animal model, we established if OCT can detect cortical changes in the acute phase of a penetrating TBI, in young (5-7 months) and old (20-22 months) rats. Due to the long-term evolution of TBI's, we wanted to investigate to what extent OCT could detect changes within the cortex in the chronic phase. Adult (7-12 months) male rats were used. Surprisingly, OCT imaging of the normal hemisphere was able to discriminate age-related differences in the mean gray values (MGV) of recorded pixels (p = .032). Furthermore, in the acute phase of TBI, OCT images recorded at 24 hr after the injury showed differences between the apparent damaged area of young and aged animals. Changes of MGV and skewness were only recorded 48 hr after injury. Monitoring the chronical evolution of the TBI with OCT revealed changes over time exceeding the normal range recorded for MGV, skewness and kurtosis, 14 and 21 days after TBI. Although in the present study we still used an extremely invasive approach, as technology improves, less invasive and non-harmful ways of recording OCT may allow for an objective way to detect changes within the brain structure after brain injuries.


Assuntos
Lesões Encefálicas Traumáticas , Tomografia de Coerência Óptica , Idoso , Animais , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Masculino , Microscopia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...