Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 6166, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731750

RESUMO

D-Aspartate (D-Asp) and D-serine (D-Ser) have been proposed to promote early-phase LTP in vitro and to enhance spatial memory in vivo. Here, we investigated the behavioural effects of chronic consumption of D-Asp and D-Ser on spatial learning of mice together with the expression of NMDA receptors. We also studied the alterations of neurogenesis by morphometric analysis of bromo-deoxyuridine incorporating and doublecortin expressing cells in the hippocampus. Our results specify a time period (3-4 h post-training), within which the animals exposed to D-Asp (but not D-Ser) show a more stable memory during retrieval. The cognitive improvement is due to elimination of transient bouts of destabilization and reconsolidation of memory, rather than to enhanced acquisition. D-Asp also protracted reversal learning probably due to reduced plasticity. Expression of GluN1 and GluN2A subunits was elevated in the hippocampus of D-Asp (but not D-Ser) treated mice. D-Asp or D-Ser did not alter the proliferation of neuronal progenitor cells in the hippocampus. The observed learning-related changes evoked by D-Asp are unlikely to be due to enhanced proliferation and recruitment of new neurones. Rather, they are likely associated with an upregulation of NMDA receptors, as well as a reorganization of receptor subunit assemblies in existing hippocampal/dentate neurons.


Assuntos
Ácido D-Aspártico/farmacologia , Hipocampo/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Memória Espacial/efeitos dos fármacos , Animais , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aprendizagem Espacial/efeitos dos fármacos
2.
Acta Neurobiol Exp (Wars) ; 79(1): 92-100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31038488

RESUMO

In a previous study, methylenedioxypyrovalerone (MDPV), a designer drug of the cathinone family, caused selective enhancement of Caspase3 immunoreactive (Casp3+) apoptotic cells in the nucleus accumbens (NAc) of 7­day­old mice. To further elaborate on the mechanism underlying MDPV­elicited apoptosis, here, we investigated the appearance of Casp3+ cells in developing neural tube explants of E12.5 mice, following MDPV treatment in vitro. Apoptotic cells appeared in large number in the pallium as radial progenitor cells and multipolar neurons, and in the subpallium including the future NAc, both in control and MDPV treated specimens. MDPV did not cause gross morphological changes in the neural tube or in the abundance of Casp3+ cells, based on a visual impression, though quantification was not attempted. We also studied the changes in NMDA receptor (NMDAR) protein subunits NR1 and NR2B in the NAc of 7­day­old MDPV treated and control mice, using western blotting of tissue obtained by selective dissection. In MDPV treated animals, expression of NR2B was lower than in the control animals, whereas expression of NR1 did not differ significantly from controls. The findings indicate that, during early postembryonic development, downregulation of the NR2B receptor subunit (at this time predominant in the NMDAR) is accompanied by a decreased viability of neurons. Decreased viability is expressed, in this case, as enhanced susceptibility to stimulation by MDPV - essentially a robust dopaminergic agent, potently affecting the neurons of the NAc. The findings are likely relevant to dopaminergic/NMDAR interactions and a potential pro­survival role of the NR2B subunit in critical phases of neural development.


Assuntos
Apoptose/efeitos dos fármacos , Benzodioxóis/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Pirrolidinas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Caspase 3/metabolismo , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos BALB C , Tubo Neural/citologia , Tubo Neural/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Catinona Sintética
3.
Int J Obes (Lond) ; 43(4): 917-927, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29907842

RESUMO

BACKGROUND/OBJECTIVES: Dysfunction in reward-related aspects of feeding, and consequent overeating in humans, is a major contributor to obesity. Intrauterine undernutrition and overnutrition are among the predisposing factors, but the exact mechanism of how overeating develops is still unclear. Consummatory behavior is regulated by the medial shell (mSh) of the accumbens nucleus (Nac) through direct connections with the rostral part of the lateral hypothalamic area (LHA). Our aim was to investigate whether an altered Nac-LHA circuit may underlie hyperphagic behavior. SUBJECTS/METHODS: Intrauterine protein-restricted (PR) male Wistar rats were used as models for hyperphagia. The experiments were performed using young adult control (normally nourished) and PR animals. Sweet condensed milk (SCM) served as a reward to test consumption and subsequent activation (Fos+) of Nac and LHA neurons. Expression levels of type 1 and 2 dopamine receptors (D1R, D2R) in the Nac, as well as tyrosine hydroxylase (TH) levels in the ventral tegmental area, were determined. The D1R agonist SKF82958 was injected into the mSh-Nac of control rats to test the effect of D1R signaling on SCM intake and neuronal cell activation in the LHA. RESULTS: A group of food reward-representing D1R+ neurons was identified in the mSh-Nac. Activation (Fos+) of these neurons was highly proportional to the consumed palatable food. D1R agonist treatment attenuated SCM intake and diminished the number of SCM-activated cells in the LHA. Hyperphagic PR rats showed increased intake of SCM, reduced D1R expression, and an impaired response to SCM-evoked neuronal activation in the mSh-Nac, accompanied by an elevated number of Fos+ neurons in the LHA compared to controls. CONCLUSIONS: Sensitivity of food reward-representing neurons in the mSh-Nac determines the level of satisfaction that governs cessation of consumption, probably through connections with the LHA. D1R signaling is a key element in this function, and is impaired in obesity-prone rats.


Assuntos
Comportamento Alimentar/fisiologia , Vias Neurais/fisiologia , Neurônios/metabolismo , Núcleo Accumbens/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar , Recompensa
4.
Sci Rep ; 8(1): 3490, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472575

RESUMO

Altered pain sensations such as hyperalgesia and allodynia are characteristic features of various pain states, and remain difficult to treat. We have shown previously that spinal application of dipeptidyl peptidase 4 (DPP4) inhibitors induces strong antihyperalgesic effect during inflammatory pain. In this study we observed low level of DPP4 mRNA in the rat spinal dorsal horn in physiological conditions, which did not change significantly either in carrageenan-induced inflammatory or partial nerve ligation-generated neuropathic states. In naïve animals, microglia and astrocytes expressed DPP4 protein with one and two orders of magnitude higher than neurons, respectively. DPP4 significantly increased in astrocytes during inflammation and in microglia in neuropathy. Intrathecal application of two DPP4 inhibitors tripeptide isoleucin-prolin-isoleucin (IPI) and the antidiabetic drug vildagliptin resulted in robust opioid-dependent antihyperalgesic effect during inflammation, and milder but significant opioid-independent antihyperalgesic action in the neuropathic model. The opioid-mediated antihyperalgesic effect of IPI was exclusively related to mu-opioid receptors, while vildagliptin affected mainly delta-receptor activity, although mu- and kappa-receptors were also involved. None of the inhibitors influenced allodynia. Our results suggest pathology and glia-type specific changes of DPP4 activity in the spinal cord, which contribute to the development and maintenance of hyperalgesia and interact with endogenous opioid systems.


Assuntos
Dipeptidil Peptidase 4/genética , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Neuralgia/tratamento farmacológico , Analgésicos Opioides/administração & dosagem , Animais , Astrócitos/efeitos dos fármacos , Linhagem da Célula/genética , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Hiperalgesia/genética , Hiperalgesia/patologia , Inflamação/genética , Inflamação/patologia , Masculino , Neuralgia/genética , Neuralgia/patologia , Neuroglia/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores Opioides kappa/genética , Receptores Opioides mu , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
5.
Brain Struct Funct ; 221(1): 605-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25344119

RESUMO

Lower brainstem projections from nucleus accumbens (Ac) subregions to the parabrachial complex (PB), the nucleus of the solitary tract and the vagal motor nuclei have been described previously in the domestic chick by our group. Such projections, particulary those from the core and rostral pole regions of Ac have not been found in mammals or pigeons. Here we report on the presence of neurotensin (NT) in the neurons projecting from different Ac subnuclei, and also from the bed nucleus of stria terminalis, to the PB in the domestic chicken. The study is based upon correlated retrograde tracing (using Fast Blue) and NT immunohistochemistry, supplemented with regional charting and quantitative analysis of double-labeled neurons. The number of retrogradely labeled cells in Ac subdivisions reflects the size of FB tracer deposit, and the degree to which it extends to the medial PB. Of all Ac subregions, the core contained the largest amount of double-labeled cells. The findings demonstrate that the anatomical pathway through which the Ac can directly modulate taste-responsive neurons of the PB employs mainly neurotensin as a neuromodulator. The observed anatomical difference between mammals and birds is either a general taxonomic feature or it reflects feeding strategies specific for the domestic chick. The results are also relevant to a better understanding of the role of NT in food intake and reward-related behaviors in birds.


Assuntos
Galinhas/metabolismo , Neurotensina/metabolismo , Núcleo Accumbens/metabolismo , Núcleos Parabraquiais/metabolismo , Paladar , Animais , Animais Recém-Nascidos , Comportamento Animal , Comportamento Alimentar , Imuno-Histoquímica , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Recompensa , Especificidade da Espécie
6.
Brain Behav Evol ; 83(2): 140-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24776994

RESUMO

Vasopressin influences social behaviour in mammals, in particular social recognition and bonding. However, much less is known about its avian analogue, vasotocin, although vasotocin appears to modulate singing behaviour and agonistic interactions together with vasoactive intestinal peptide (VIP) in some songbirds. The objectives of our study were to compare the expression of vasotocin and VIP in brain nuclei hypothetised to be part of the social behavioural network, i.e. septal areas, bed nucleus of the stria terminalis and medial preoptic nucleus (POM), in two songbird species in the wild: the blue tit (Cyanistes caeruleus) and European penduline tit (Remiz pendulinus). These two closely related passerine birds differ in their pair bonding and mating systems: blue tits are socially monogamous with extensive pair bond lasting for several months, whereas in the European penduline tit, pair bond is short and it dissolves during or after laying of the eggs. The two species did not differ in the distribution of vasotocin in the observed brain regions; however, VIP was more abundant in all three regions of penduline tits than in blue tits. We found a sex difference in favour of males in the distribution of vasotocin- and VIP-immunoreactive neurones, fibres and terminals in all three regions in penduline tits. In blue tits, such gender differences were only observed in the POM. The limited differences between the two species suggest that the levels of vasotocin and VIP in the socially relevant brain regions are likely influenced by many other social or environmental factors than just by differences in the duration of pair bonding.


Assuntos
Química Encefálica , Comportamento Sexual Animal/fisiologia , Aves Canoras/fisiologia , Peptídeo Intestinal Vasoativo/análise , Vasotocina/análise , Animais , Feminino , Imuno-Histoquímica , Masculino , Aves Canoras/metabolismo , Especificidade da Espécie , Peptídeo Intestinal Vasoativo/imunologia , Vasotocina/imunologia
7.
Neurochem Int ; 59(5): 695-705, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21756954

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is a widely used recreational drug known to cause selective long-term serotonergic damage. In our recent paper we described region-specific, dose-dependent increase in the protein expression of astroglial Hsp27 and neuronal Hsp72 molecular chaperones after MDMA administration of rats. Here, we examined the possible interaction of elevated Hsp27 protein level to hyperthermic responses after MDMA administration and its separation from drug-induced serotonergic neurotoxicity. For this, 7-8 week old male Dark Agouti rats were treated with 15 mg/kg i.p. MDMA. Treatment at an ambient temperature of 22 ± 1°C caused a significant elevation of the rectal temperature, an increase of Hsp27 immunoreactive protoplasmic astrocytes in the hippocampus, the parietal and cingulate cortices, and a significant decrease in the density of tryptophan hydroxylase immunoreactive fibers in the same brain regions, 8h as well as 24h after drug administrations. In addition, serotonergic axons exhibited numerous swollen varicosities and fragmented morphology. MDMA treatment at low ambient temperature (10 ± 2°C) almost completely abolished the elevation of body temperature and the increased astroglial Hsp27 expression but failed to alter - or just slightly attenuated - the depletion in the density of tryptophan hydroxylase immunoreactive fibers. These results suggest that the increased astroglial Hsp27 protein expression is rather related to the hyperthermic response after the drug administration and it could be separated from the serotonergic neurotoxicity caused by MDMA. In addition, the induction of Hsp27 per se is uneffective to protect serotonergic fibers after MDMA administration. Our results also suggest that Tph immunohistochemistry is an early and sensitive method to demonstrate MDMA-caused vulnerability.


Assuntos
Astrócitos/metabolismo , Química Encefálica/efeitos dos fármacos , Temperatura Baixa , Proteínas de Choque Térmico HSP27/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Serotoninérgicos/toxicidade , Serotonina/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Western Blotting , Temperatura Corporal , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Giro Denteado/citologia , Giro Denteado/metabolismo , Imuno-Histoquímica , Masculino , Fibras Nervosas/metabolismo , Ratos , Triptofano Hidroxilase/metabolismo
8.
Neurochem Int ; 52(1-2): 95-102, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17719142

RESUMO

In the present study we investigated whether serotonin release in the hippocampus is subject to regulation via cannabinoid receptors. Both rat and mouse hippocampal slices were preincubated with [3H]serotonin ([3H]5-HT) and superfused with medium containing serotonin reuptake inhibitor citalopram hydrobromide (300 nM). The cannabinoid receptor agonist R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2, 1 microM) did not affect either the resting or the electrically evoked [3H]5-HT release. In the presence of the ionotropic glutamate receptor antagonists D(-)-2-amino-5-phosphonopentanoic acid (AP-5, 50 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione-disodium (CNQX, 10 microM) the evoked [3H]5-HT release was decreased significantly. Similar findings were obtained when CNQX (10 microM) was applied alone with WIN55,212-2. This effect was abolished by the selective cannabinoid receptor subtype 1 (CB1) antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716, 1 microM) and 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide trifluoroacetate salt (AM251, 1 microM). Similarly to that observed in rats, WIN55,212-2 (1 microM) decreased the evoked [3H]5-HT efflux in wild-type mice (CB1+/+). The inhibitory effect of WIN55,212-2 (1 microM) was completely absent in hippocampal slices derived from mice genetically deficient in CB1 cannabinoid receptors (CB1-/-). Relatively selective degeneration of fine serotonergic axons by the neurotoxin parachloramphetamine (PCA) reduced significantly the tritium uptake and the evoked [3H]5-HT release. In addition, PCA, eliminated the effect of WIN55,212-2 (1 microM) on the stimulation-evoked [3H]5-HT efflux. In contrast to the PCA-treated animals, WIN55,212-2 (1 microM) reduced the [3H]5-HT efflux in the saline-treated group. Our data suggest that a subpopulation of non-synaptic serotonergic afferents express CB1 receptors and activation of these CB1 receptors leads to a decrease in 5-HT release.


Assuntos
Hipocampo/metabolismo , Receptor CB1 de Canabinoide/fisiologia , Serotonina/metabolismo , Animais , Técnicas In Vitro , Masculino , Camundongos , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Sinapses/metabolismo , Trítio , p-Cloroanfetamina/farmacologia
9.
J Pharmacol Exp Ther ; 310(3): 973-80, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15084650

RESUMO

This study was designed to test the hypothesis of whether activation of presynaptic P2X receptor-gated ion channels elicits noradrenaline release from central catecholaminergic terminals. ATP, alpha,beta-methylene-adenosine 5'-triphosphate (alpha,beta-methyleneATP), and ADP elicited concentration-dependent [3H]noradrenaline outflow from superfused rat hippocampal slices with the following rank order of agonist potency: alpha,beta-methyleneATP > ATP > ADP. Among P2 receptor antagonists, pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (30 microM), 4,4',4",4"'-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,3-benzenedisulfonic acid (100 nM), and 8,8'-[carbonybis(imino-3,1-phenylenecarbonylimino)]bis1,3,5-naphthalenetrisulphonic acid (10 microM) significantly inhibited the outflow of [3H]noradrenaline, evoked by ATP, whereas Brilliant Blue G (100 nM), 2'-deoxy-N6-methyladenosine 3',5'-bisphosphate tetraammonium (10 microM), the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (250 nM), and the A2A receptor antagonist 3,7-dimethyl-1-propargylxanthine (250 nM) were ineffective. Pretreatment with the Gi protein inhibitor pertussis toxin (2.5 microg/ml) did not change the effect of ATP on [3H]noradrenaline outflow. In contrast, a decrease in extracellular pH from 7.4 to 6.6 significantly attenuated the response by ATP. When extracellular Na+ was replaced by choline chloride and in the presence of the noradrenaline uptake inhibitor desipramine (10 microM), the ATP-evoked [3H]noradrenaline outflow was almost completely abolished, indicating that its underlying mechanism is the sodium-dependent reversal of the noradrenaline transporter. Reverse transcription-polymerase chain reaction analysis revealed that mRNA encoding P2X1, P2X2, P2X3, P2X4, P2X6, P2X7 and P2Y1 receptor subunits were expressed in the brainstem containing catecholaminergic nuclei projecting to the hippocampus, whereas mRNA encoding P2X5, P2Y2, P2Y4, and P2Y6 receptors were absent. Taken together, these results indicate that noradrenergic terminals of the rat hippocampus are equipped with presynaptic facilitatory P2X receptors, displaying a pharmacological profile similar to homomeric P2X1 and P2X3 receptors.


Assuntos
Hipocampo/metabolismo , Norepinefrina/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Masculino , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Purinérgicos P2/fisiologia , Receptores Purinérgicos P2X , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...