Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(2): 957-966, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595652

RESUMO

We present in situ pressure experiments on aluminogermanate nanotubes studied by X-ray scattering and absorption spectroscopy measurements. Structural transformations under hydrostatic pressure below 10 GPa are investigated as a function of the morphology, organization, or functionalization of the nanotubes. Radial deformations, ovalization for isolated nanotubes, and hexagonalization when they are bundled are evidenced. Radial collapse of single-walled nanotubes is shown to occur, in contrast to the double-walled nanotubes. The effect of the transmitting pressure medium used on the collapse onset pressure value is demonstrated. Axial Young's moduli are determined for isolated (400 GPa) and bundled (600 GPa) single-walled nanotubes, double-walled nanotubes (440 GPa), and methylated single-walled nanotubes (200 GPa).

2.
Sci Rep ; 12(1): 16018, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163401

RESUMO

We report the exceptional structural and magnetic stability of SrFeO[Formula: see text] under pressure by X-Ray Magnetic Circular Dichroism (XMCD) and X-ray Diffraction (XRD) up to the Mbar range. The XMCD data confirm the onset of ferromagnetism above 30 GPa and its stability up to 102 GPa while XRD shows that SrFeO[Formula: see text] structure remains unchanged from 30 GPa up to 111 GPa without any sign of structural transition. Our results demonstrate the robustness of Fe properties under extreme conditions in the square planar environment.

3.
J Phys Condens Matter ; 34(25)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35378521

RESUMO

This paper presents a study of the lattice dynamics in BaFe2Se3. We combined first-principle calculations, infrared measurements and a thorough symmetry analysis. Our study confirms thatPnmacannot be the space group of BaFe2Se3, even at room temperature. The phonons assignment requiresPmto be the BaFe2Se3space group, not only in the magnetic phase, but also in the paramagnetic phase at room temperature. This is due to a strong coupling between a short-range spin-order along the ladders, and the lattice degrees of freedom associated with the Fe-Fe bond length. This coupling induces a change in the bond-length pattern from an alternated trapezoidal one (as inPnma) to an alternated small/large rectangular one. Out of the two patterns, only the latter is fully compatible with the observed block-type magnetic structure. Finally, we propose a complete symmetry analysis of the BaFe2Se3phase diagram in the 0-600 K range.

4.
J Synchrotron Radiat ; 26(Pt 1): 263-271, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655494

RESUMO

GALAXIES is an in-vacuum undulator hard X-ray micro-focused beamline dedicated to the study of the electronic structure of materials with high energy resolution using both photoelectron spectroscopy and inelastic X-ray scattering and under both non-resonant (NR-IXS) and resonant (RIXS) conditions. Due to the penetrating power of hard X-rays and the `photon-in/photon-out' technique, the sample environment is not a limitation. Materials under extreme conditions, for example in diamond anvil cells or catalysis chambers, thus constitute a major research direction. Here, the design and performance of the inelastic X-ray scattering end-station that operates in the energy range from ∼4 keV up to 12 keV is reported, and its capabilities are highlighted using a selection of data taken from recently performed experiments. The ability to scan `on the fly' the incident and scattered/emitted X-ray energies, and the sample position enables fast data collection and high experimental throughput. A diamond X-ray transmission phase retarder, which can be used to generate circularly polarized light, will also be discussed in the light of the recent RIXS-MCD approach.

5.
Sci Rep ; 7(1): 14506, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109510

RESUMO

In solid state science, multifunctional materials and especially multiferroics have attracted a great deal of attention, as they open the possibility for next generation spintronic and data storage devices. Interestingly, while many of them host coexisting 3d and 4f elements, the role of the coupling between these two magnetic entities has remained elusive. By means of single crystal neutron diffraction and inelastic neutron scattering experiments we shed light on this issue in the particular case of the multiferroic oxide DyMn2O5. This compound undergoes a first order magnetic transition from a high temperature incommensurate phase to a low temperature commensurate one. Our investigation reveals that although these two phases have very different magnetic structures, the spin excitations are quite similar indicating a fragile low temperature ground state with respect to the high temperature one. Such a rare scenario is argued to be a manifestation of the competition between the exchange interaction and 4f magnetic anisotropy present in the system. It is concluded that the magnetic structure, hence the ferroelectricity, can be finely tuned depending on the anisotropy of the rare earth.

6.
Phys Rev Lett ; 114(17): 177001, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978255

RESUMO

Using high-resolution, lifetime removed, x-ray absorption spectroscopy at the As K edge, we evidence the strong sensitivity of the As electronic structure upon electron doping with Co or pressure change in BaFe2As2, at room temperature. Our results unravel the prominent role played by As-4p orbitals in the electronic properties of the Fe pnictide superconductors. We propose a unique picture to describe the overall effect of both external parameter doping and pressure, resolving the apparent contradiction between angle-resolved photoemission spectroscopy, transport, and absorption results, with the As-p states as a key ingredient.

7.
Phys Rev Lett ; 114(11): 117601, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839307

RESUMO

It is established that the multiferroics RMn(2)O(5) crystallize in the centrosymmetric Pbam space group and that the magnetically induced electric polarization appearing at low temperature is accompanied by a symmetry breaking. However, both our present x-ray study-performed on compounds with R=Pr,Nd,Gd,Tb, and Dy-and first-principles calculations unambiguously rule out this picture. Based on structural refinements, geometry optimization, and physical arguments, we demonstrate in this Letter that the actual space group is likely to be Pm. This turns out to be of crucial importance for RMn(2)O(5) multiferroics since Pm is not centrosymmetric. Ferroelectricity is thus already present at room temperature, and its enhancement at low temperature is a spin-enhanced process. This result is also supported by direct observation of optical second harmonic generation. This fundamental result calls into question the actual theoretical approaches that describe the magnetoelectric coupling in this multiferroic family.

8.
J Synchrotron Radiat ; 22(1): 175-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537606

RESUMO

The GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic X-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard X-ray range. These two techniques offer powerful complementary methods of characterization of materials with bulk sensitivity, chemical and orbital selectivity, resonant enhancement and high resolving power. After a description of the beamline components and endstations, the beamline capabilities are demonstrated through a selection of recent works both in the solid and gas phases and using either IXS or HAXPES approaches. Prospects for studies on liquids are discussed.

9.
Nature ; 468(7321): 283-5, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21068838

RESUMO

The elucidation of the pseudogap phenomenon of the high-transition-temperature (high-T(c)) copper oxides-a set of anomalous physical properties below the characteristic temperature T* and above T(c)-has been a major challenge in condensed matter physics for the past two decades. Following initial indications of broken time-reversal symmetry in photoemission experiments, recent polarized neutron diffraction work demonstrated the universal existence of an unusual magnetic order below T* (refs 3, 4). These findings have the profound implication that the pseudogap regime constitutes a genuine new phase of matter rather than a mere crossover phenomenon. They are furthermore consistent with a particular type of order involving circulating orbital currents, and with the notion that the phase diagram is controlled by a quantum critical point. Here we report inelastic neutron scattering results for HgBa(2)CuO(4+δ) that reveal a fundamental collective magnetic mode associated with the unusual order, and which further support this picture. The mode's intensity rises below the same temperature T* and its dispersion is weak, as expected for an Ising-like order parameter. Its energy of 52-56 meV renders it a new candidate for the hitherto unexplained ubiquitous electron-boson coupling features observed in spectroscopic studies.

10.
Phys Rev Lett ; 105(2): 027004, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20867731

RESUMO

In high-temperature copper oxide superconductors, a novel magnetic order associated with the pseudogap phase has been identified in two different cuprate families over a wide region of temperature and doping. We report here the observation below 120 K of a similar magnetic ordering in the archetypal cuprate La(2-x)Sr(x)CuO4 (LSCO) system for x=0.085. In contrast with the previous reports, the magnetic ordering in LSCO is only short range with an in-plane correlation length of ∼10 A and is bidimensional (2D). Such a less pronounced order suggests an interaction with other electronic instabilities. In particular, LSCO also exhibits a strong tendency towards stripes ordering at the expense of the superconducting state.

11.
Nature ; 455(7211): 372-5, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18800135

RESUMO

The pseudogap region of the phase diagram is an important unsolved puzzle in the field of high-transition-temperature (high-T(c)) superconductivity, characterized by anomalous physical properties. There are open questions about the number of distinct phases and the possible presence of a quantum-critical point underneath the superconducting dome. The picture has remained unclear because there has not been conclusive evidence for a new type of order. Neutron scattering measurements for YBa(2)Cu(3)O(6+delta) (YBCO) resulted in contradictory claims of no and weak magnetic order, and the interpretation of muon spin relaxation measurements on YBCO and of circularly polarized photoemission experiments on Bi(2)Sr(2)CaCu(2)O(8+delta)(refs 12, 13) has been controversial. Here we use polarized neutron diffraction to demonstrate for the model superconductor HgBa(2)CuO(4+delta) (Hg1201) that the characteristic temperature T* marks the onset of an unusual magnetic order. Together with recent results for YBCO, this observation constitutes a demonstration of the universal existence of such a state. The findings appear to rule out theories that regard T* as a crossover temperature rather than a phase transition temperature. Instead, they are consistent with a variant of previously proposed charge-current-loop order that involves apical oxygen orbitals, and with the notion that many of the unusual properties arise from the presence of a quantum-critical point.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...