Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 191: 110559, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36413938

RESUMO

We have designed and constructed a high-energy γ-ray source for detector characterisation and calibration. The source is a composite type based on a plutonium-beryllium neutron emitter embedded in a paraffin moderator, which is homogeneously mixed with nickel powder. The 9 MeV γ-ray source produces approximately 450 photons per second in 4π when 2.2×105 neutrons per second are emitted, corresponding to a surface flux of 9 MeV γ-rays of approximately 2.5×10-6 cm-2 per emitted neutron. Here we discuss the properties and design of this source, including the characterisation of homogeneity and high-energy γ-ray emission spectra.

3.
Appl Radiat Isot ; 167: 109441, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33002762

RESUMO

Here we present an investigation of a plutonium-beryllium neutron source available at the Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania, to be used for detector characterization during the implementation of the Extreme Light Infrastructure - Nuclear Physics project. Using several different techniques and instruments, we have measured the isotopic composition for plutonium to be 75% 239Pu and 24% 240Pu, with a minor contribution from other isotopes. Furthermore, we have measured the source activity as of November 20th 2019 to be 2.220(5)×105 neutrons per second with a mean energy of 3.25(17) MeV. We have also measured both the γ-tagged and full neutron energy spectra, and discuss the origin of the observed structure in the neutron energies based on these. All these parameters are of importance both for traceability of nuclear material, radioprotection, and accurate detector characterization.

4.
Nat Commun ; 11(1): 3242, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591502

RESUMO

Second-order processes in physics is a research topic focusing attention from several fields worldwide including, for example, non-linear quantum electrodynamics with high-power lasers, neutrinoless double-ß decay, and stimulated atomic two-photon transitions. For the electromagnetic nuclear interaction, the observation of the competitive double-γ decay from 137mBa has opened up the nuclear structure field for detailed investigation of second-order processes through the manifestation of off-diagonal nuclear polarisability. Here, we confirm this observation with an 8.7σ significance, and an improved value on the double-photon versus single-photon branching ratio as 2.62 × 10-6(30). Our results, however, contradict the conclusions from the original experiment, where the decay was interpreted to be dominated by a quadrupole-quadrupole component. Here, we find a substantial enhancement in the energy distribution consistent with a dominating octupole-dipole character and a rather small quadrupole-quadrupole component in the decay, hindered due to an evolution of the internal nuclear structure. The implied strongly hindered double-photon branching in 137mBa opens up the possibility of the double-photon branching as a feasible tool for nuclear-structure studies on off-diagonal polarisability in nuclei where this hindrance is not present.

5.
Phys Rev Lett ; 124(11): 112501, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242689

RESUMO

The gyromagnetic factor of the low-lying E=251.96(9) keV isomeric state of the nucleus ^{99}Zr was measured using the time-dependent perturbed angular distribution technique. This level is assigned a spin and parity of J^{π}=7/2^{+}, with a half-life of T_{1/2}=336(5) ns. The isomer was produced and spin aligned via the abrasion-fission of a ^{238}U primary beam at RIKEN RIBF. A magnetic moment |µ|=2.31(14)µ_{N} was deduced showing that this isomer is not single particle in nature. A comparison of the experimental values with interacting boson-fermion model IBFM-1 results shows that this state is strongly mixed with a main νd_{5/2} composition. Furthermore, it was found that monopole single-particle evolution changes significantly with the appearance of collective modes, likely due to type-II shell evolution.

6.
Phys Rev Lett ; 122(19): 192502, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144969

RESUMO

The change in mean-square nuclear charge radii δ⟨r^{2}⟩ along the even-A tin isotopic chain ^{108-134}Sn has been investigated by means of collinear laser spectroscopy at ISOLDE/CERN using the atomic transitions 5p^{2} ^{1}S_{0}→5p6 s^{1}P_{1} and 5p^{2} ^{3}P_{0}→5p6s ^{3}P_{1}. With the determination of the charge radius of ^{134}Sn and corrected values for some of the neutron-rich isotopes, the evolution of the charge radii across the N=82 shell closure is established. A clear kink at the doubly magic ^{132}Sn is revealed, similar to what has been observed at N=82 in other isotopic chains with larger proton numbers, and at the N=126 shell closure in doubly magic ^{208}Pb. While most standard nuclear density functional calculations struggle with a consistent explanation of these discontinuities, we demonstrate that a recently developed Fayans energy density functional provides a coherent description of the kinks at both doubly magic nuclei, ^{132}Sn and ^{208}Pb, without sacrificing the overall performance. A multiple correlation analysis leads to the conclusion that both kinks are related to pairing and surface effects.

7.
Phys Rev Lett ; 121(10): 102501, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30240248

RESUMO

Differences in mean-square nuclear charge radii of ^{100-130}Cd are extracted from high-resolution collinear laser spectroscopy of the 5s ^{2}S_{1/2}→5p ^{2}P_{3/2} transition of the ion and from the 5s5p ^{3}P_{2}→5s6s ^{3}S_{1} transition in atomic Cd. The radii show a smooth parabolic behavior on top of a linear trend and a regular odd-even staggering across the almost complete sdgh shell. They serve as a first test for a recently established new Fayans functional and show a remarkably good agreement in the trend as well as in the total nuclear charge radius.

8.
Rep Prog Phys ; 81(9): 094301, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29952755

RESUMO

The European Strategy Forum on Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser fields with intensities reaching up to 1022-1023 W cm-2 called 'ELI' for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011-2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientific research at the frontier of knowledge involving two domains. The first one is laser-driven experiments related to nuclear physics, strong-field quantum electrodynamics and associated vacuum effects. The second is based on a Compton backscattering high-brilliance and intense low-energy gamma beam (<20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with significant societal impact are being developed. The ELI-NP research centre will be located in Magurele near Bucharest, Romania. The project is implemented by 'Horia Hulubei' National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and multi-MeV brilliant gamma beam scientific and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The science and examples of societal applications at reach with these electromagnetic probes with much improved performances provided at this new facility will be discussed with a special focus on day-one experiments and associated novel instrumentation.

9.
Phys Rev Lett ; 116(3): 032501, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26849588

RESUMO

Isomer shifts have been determined in ^{111-129}Cd by high-resolution laser spectroscopy at CERN-ISOLDE. The corresponding mean square charge-radii changes, from the 1/2^{+} and the 3/2^{+} ground states to the 11/2^{-} isomers, have been found to follow a distinct parabolic dependence as a function of the atomic mass number. Since the isomers have been previously associated with simplicity due to the linear mass dependence of their quadrupole moments, the regularity of the isomer shifts suggests a higher order of symmetry affecting the ground states in addition. A comprehensive description assuming nuclear deformation is found to accurately reproduce the radii differences in conjunction with the known quadrupole moments. This intuitive interpretation is supported by covariant density functional theory.

10.
Phys Rev Lett ; 115(17): 172501, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26551106

RESUMO

Excited states of the neutron-rich nuclei (97,99)Rb were populated for the first time using the multistep Coulomb excitation of radioactive beams. Comparisons of the results with particle-rotor model calculations provide clear identification for the ground-state rotational band of (97)Rb as being built on the πg(9/2) [431] 3/2(+) Nilsson-model configuration. The ground-state excitation spectra of the Rb isotopes show a marked distinction between single-particle-like structures below N=60 and rotational bands above. The present study defines the limits of the deformed region around A∼100 and indicates that the deformation of (97)Rb is essentially the same as that observed well inside the deformed region. It further highlights the power of the Coulomb-excitation technique for obtaining spectroscopic information far from stability. The (99)Rb case demonstrates the challenges of studies with very short-lived postaccelerated radioactive beams.

12.
Phys Rev Lett ; 114(6): 062501, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25723214

RESUMO

A precise measurement of the g factor of the first-excited state in the self-conjugate (N=Z) nucleus (24)Mg is performed by a new time-differential recoil-in-vacuum method based on the hyperfine field of hydrogenlike ions. Theory predicts that the g factors of such states, in which protons and neutrons occupy the same orbits, should depart from 0.5 by a few percent due to configuration mixing and meson-exchange effects. The experimental result, g=0.538±0.013, is in excellent agreement with recent shell-model calculations and shows a departure from 0.5 by almost 3 standard deviations, thus achieving, for the first time, the precision and accuracy needed to test theory. Proof of the new method opens the way for wide applications including measurements of the magnetism of excited states of exotic nuclei produced as radioactive beams.

13.
Phys Rev Lett ; 110(19): 192501, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23705701

RESUMO

The neutron-rich isotopes of cadmium up to the N=82 shell closure have been investigated by high-resolution laser spectroscopy. Deep-uv excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in (127)Cd and (129)Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by a linear increase of the 11/2(-) quadrupole moments. Remarkably, this mechanism is found to act well beyond the h(11/2) shell.

14.
Phys Rev Lett ; 108(16): 162501, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22680712

RESUMO

We report on the spectroscopic quadrupole moment measurement of the 7/2(1)(-) isomeric state in (16)(43)S(27) [E*=320.5(5) keV, T(1/2)=415(3) ns], using the time dependent perturbed angular distribution technique at the RIKEN RIBF facility. Our value, |Q(s)|=23(3) efm(2), is larger than that expected for a single-particle state. Shell model calculations using the modern SDPF-U interaction for this mass region reproduce remarkably well the measured |Q(s)|, and show that non-negligible correlations drive the isomeric state away from a purely spherical shape.

15.
Phys Rev Lett ; 102(9): 092501, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392514

RESUMO

We report on the g-factor measurement of the first isomeric state in (16)43S27 [Ex=320.5(5) keV, T1/2=415(5) ns, and g=0.317(4)]. The 7/2- spin-parity of the isomer and the intruder nature of the ground state of the nucleus are experimentally established for the first time, providing direct and unambiguous evidence of the collapse of the N=28 shell closure in neutron-rich nuclei. The shell model, beyond the mean-field and semiempirical calculations, provides a very consistent description of this nucleus showing that a well deformed prolate and quasispherical states coexist at low energy.

16.
Phys Rev Lett ; 102(9): 092502, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392515

RESUMO

The gamma decay from Coulomb excitation of 68Ni at 600 MeV/nucleon on a Au target was measured using the RISING setup at the fragment separator of GSI. The 68Ni beam was produced by a fragmentation reaction of 86Kr at 900 MeV/nucleon on a 9Be target and selected by the fragment separator. The gamma rays produced at the Au target were measured with HPGe detectors at forward angles and with BaF2 scintillators at backward angles. The measured spectra show a peak centered at approximately 11 MeV, whose intensity can be explained in terms of an enhanced strength of the dipole response function (pygmy resonance). Such pygmy structure has been predicted in this unstable neutron-rich nucleus by theory.

17.
Phys Rev Lett ; 101(13): 132502, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18851441

RESUMO

The electric quadrupole moment and the magnetic moment of the 11Li halo nucleus have been measured with more than an order of magnitude higher precision than before, |Q| = 33.3(5) mb and mu = +3.6712(3)muN, revealing a 8.8(1.5)% increase of the quadrupole moment relative to that of 9Li. This result is compared to various models that aim at describing the halo properties. In the shell model an increased quadrupole moment points to a significant occupation of the 1d orbits, whereas in a simple halo picture this can be explained by relating the quadrupole moments of the proton distribution to the charge radii. Advanced models so far fail to reproduce simultaneously the trends observed in the radii and quadrupole moments of the lithium isotopes.

18.
Phys Rev Lett ; 100(11): 112502, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18517779

RESUMO

Collective properties of the low-lying levels in the odd-A 67-73Cu were investigated by Coulomb excitation with radioactive beams. The beams were produced at ISOLDE and postaccelerated by REX-ISOLDE up to 2.99 MeV/u. In 67,69Cu, low-lying 1/2(-), 5/2(-), and 7/2(-) states were populated. In 71,73Cu, besides the known transitions deexciting the single-particle-like 5/2(-) and core-coupled 7/2(-) levels, gamma rays of 454 and 135 keV, respectively, were observed for the first time. Based on a reanalysis of beta-decay work and comparison with the systematics, a spin 1/2(-) is suggested for these excited states. Three B(E2) values were determined in each of the four isotopes. The results indicate a significant change in the structure of the odd-A Cu isotopes beyond N=40 where single-particle-like and collective levels are suggested to coexist at very low excitation energies.

19.
Phys Rev Lett ; 98(12): 122701, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17501116

RESUMO

We report on the first low-energy Coulomb excitation measurements with radioactive Ipi=6- beams of odd-odd nuclei 68,70Cu. The beams were produced at ISOLDE, CERN and were post-accelerated by REX-ISOLDE to 2.83 MeV/nucleon. Gamma rays were detected with the MINIBALL spectrometer. The 6- beam was used to study the multiplet of states (3-, 4-, 5-, 6-) arising from the pi2p3/2 nu 1g9/2 configuration. The 4- state of the multiplet was populated via Coulomb excitation and the B(E2;6--->4-) value was determined in both nuclei. The results obtained illustrate the fragile stability of the Z=28 shell and N=40 subshell closures. A comparison with large-scale shell-model calculations using the 56Ni core shows the importance of the proton excitations across the Z=28 shell gap to the understanding of the nuclear structure in the neutron-rich nuclei with N approximately 40.

20.
Phys Rev Lett ; 96(5): 052501, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16486924

RESUMO

Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F,4n)134Pr. Recoil distance Doppler-shift and Doppler-shift attenuation measurements using the Euroball spectrometer, in conjunction with the inner Bismuth Germanate ball and the Cologne plunger, were performed at beam energies of 87 MeV and 83 MeV, respectively. Reduced transition probabilities in 134Pr are compared to the predictions of the two quasiparticle + triaxial rotor and interacting boson fermion-fermion models. The experimental results do not support the presence of static chirality in 134Pr underlying the importance of shape fluctuations. Only within a dynamical context the presence of intrinsic chirality in 134Pr can be supported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...