Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Environ Sci Pollut Res Int ; 30(57): 120984-120993, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37947930

RESUMO

Water hyacinth (WH) is used as the substrate for biogas production due to its high lignocellulosic composition and natural abundance. The present study used thermal and chemical (alkali) pretreatment techniques to enhance biogas production from water hyacinth used as a substrate by anaerobic digestion. Thermal pretreatment was done using an autoclave at 121 °C and 15 lb (2 bar) pressure and alkali pretreatment by NaOH at two concentrations (2% and 5% w/v). The inoculum:substrate ratio for biogas production was 2:1, where cow dung was used as inoculum. Results indicated that the pretreatments increased biomass degradability and improved biogas production. Water hyacinth pretreated with 5% NaOH produced the highest amount of biogas (142.61 L/Kg VS) with a maximum methane content of 64.59%. The present study found that alkali pretreatment can modify the chemical structure and enhance WH hydrolysis, leading to enhanced energy production.


Assuntos
Biocombustíveis , Eichhornia , Hidróxido de Sódio , Metano , Álcalis , Anaerobiose
2.
Phytother Res ; 37(10): 4398-4413, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37468211

RESUMO

Keap1-Nrf2 is a fundamental signaling cascade known to promote or prevent carcinogenesis. Extensive studies identify the key target of modulatory aspects of Keap1-Nrf2 signaling against cancer. Nutraceuticals are those dietary agents with many health benefits that have immense potential for cancer chemoprevention. The nutritional supplements known as nutraceuticals are found to be one of the most promising chemoprevention agents. Upon investigating the dual nature of Nrf2, it became clear that, in addition to shielding normal cells from numerous stresses, Nrf2 may also promote the growth of tumors. In the present review, we performed a systematic analysis of the role of 12 different nutraceuticals like curcumin, sulforaphane, resveratrol, polyunsaturated fatty acids (PUFA) from fish oil, lycopene, soybean, kaempferol, allicin, thymoquinone, quercetin, gingerol, and piperine in modulating the Nrf2/Keap1 signaling mechanism. Among these, 12 Generally Recognized As Safe (GRAS) certified nutraceuticals, sulforaphane is the most extensively studied compound in modulating Keap1-Nrf signaling. Even though there is much evidence at preclinical levels, further high-quality research is still required to validate the potential role of these nutraceuticals in Keap1-Nrf2 modulation.

4.
Rice (N Y) ; 15(1): 45, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976520

RESUMO

BACKGROUND: Improved Samba Mahsuri (ISM) is an elite, high-yielding, bacterial blight resistant, fine-grained rice variety with low glycaemic index. It is highly sensitive to salt stress, particularly at seedling stage, which significantly reduces its yield potential in coastal areas. A salinity tolerant QTL, Saltol, associated with seedling stage tolerance was previously mapped on chromosome 1 (10.6-11.5 Mb) from the Indian landrace, Pokkali and is effective in different genetic backgrounds. The objective of this study was to enhance salinity tolerance of ISM by incorporating the Saltol QTL through marker-assisted backcross breeding using the breeding line, FL478 (Pokkali/IR29). RESULTS: Foreground selection was carried out at each generation using five Saltol-specific markers and three bacterial blight resistance genes, Xa21, xa13 and xa5. Background selection was conducted using 66 well distributed polymorphic SSR markers and at the BC3F2 generation, a single plant with maximum recurrent parent genome recovery (95.3%) was identified and advanced to the BC3F4 generation. Based on bacterial blight resistance, seedling stage salinity tolerance and resemblance to ISM, four advanced breeding lines were selected for testing in replicated experiments near Hyderabad, India. A promising near-isogenic line, DRR Dhan 58, was evaluated in multi-location trials-coastal salinity and it showed significant salinity tolerance, resistance to bacterial blight disease, high yield and excellent grain quality during the 2019 and 2020 trials. DRR Dhan 58 was 95.1% similar to ISM based on genotyping with the 90 K SNP chip. Whole genome resequencing analysis of Pokkali and FL478 which were salinity tolerant checks, ISM and DRR Dhan 58 showed a high degree of relatedness with respect to the candidate gene loci for Saltol and OsSKC1 (Shoot K+ Concentration 1). CONCLUSION: DRR Dhan 58, possessing Saltol and three bacterial blight resistance genes (Xa21, xa13 and xa5) in the genetic background of the Indian mega-variety of rice, Samba Mahsuri, was developed for potential cultivation in areas prone to seedling stage salinity, as well as areas with endemic bacterial blight disease. This entry had a 24% yield advantage over the recurrent parent ISM under coastal saline conditions in multi-location trials and was recently released for commercial cultivation in India.

5.
Environ Res ; 211: 113095, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35283074

RESUMO

The work demonstrates the effective utilization of hybrid Polyurethane - palladium doped zirconium oxide (Pd-ZrO2) as innovative carriers for corrosion protection coatings on steel materials. ZrO2 and Pd-ZrO2 nanoparticles were successfully synthesized using Photodeposition followed by the hydrothermal synthesis method. The synthesized nanoparticles were then incorporated into the polyurethane matrix and characterized using Fourier-transform infrared spectroscopy and scanning electron microscopy (SEM). The FTIR and SEM confirm the presence of ZrO2 and Pd-ZrO2 nanoparticles and their morphologies in polyurethane composites material. The thermogravimetric analysis (TGA) results indicated that the polyurethane matrix remained stable up to 250 °C. At 800 °C, >50% of residues are observed for Pd-ZrO2 - polyurethane in the TGA analysis, which confirms that the primer and nanoparticles addition enhances the thermal stability of the composite. The water contact angle measurement explains the hydrophobic behavior of nanocomposite modified coatings on a mild steel substrate. It indicates that Pd-ZrO2 and primer significantly increase the hydrophobicity of polyurethane. The major advantages of developing water-repellent or hydrophobic surfaces open up a world of possibilities for metals and alloys in terms of corrosion prevention. Electrochemical impedance spectroscopy (EIS) and a salt spray test were used to determine the anti-corrosion behavior of the prepared polymer nanocomposites. The polymer nanocomposite coatings have better anti-corrosive capabilities when compared to pure polyurethane. The corrosion protection efficiency increased from 76.63% to 97.57% upon incorporating 2 wt % of Pd-ZrO2 in the polyurethane matrix. The results confirmed that the modifications on the polyurethane enhanced the hydrophobicity and anti-corrosion properties of the polymer nanocomposite coatings.


Assuntos
Materiais Revestidos Biocompatíveis , Poliuretanos , Materiais Revestidos Biocompatíveis/química , Corrosão , Polímeros , Aço , Água
6.
3 Biotech ; 11(12): 513, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34926111

RESUMO

A doubled haploid (DH) population consisting of 125 DHLs derived from the popular rice hybrid, KRH-2 (IR58025A/KMR3R) was utilized for Quantitative Trait Loci (QTL) mapping to identify novel genomic regions associated with yield related traits. A genetic map was constructed with 126 polymorphic SSR and EST derived markers, which were distributed across rice genome. QTL analysis using inclusive composite interval mapping (ICIM) method identified a total of 24 major and minor effect QTLs. Among them, twelve major effect QTLs were identified for days to fifty percent flowering (qDFF12-1), total grain yield/plant (qYLD3-1 and qYLD6-1), test (1,000) grain weight (qTGW6-1 and qTGW7-1), panicle weight (qPW9-1), plant height (qPH12-1), flag leaf length (qFLL6-1), flag leaf width (qFLW4-1), panicle length (qPL3-1 and qPL6-1) and biomass (qBM4-1), explaining 29.95-56.75% of the phenotypic variability with LOD scores range of 2.72-16.51. Chromosomal regions with gene clusters were identified on chromosome 3 for total grain yield/plant (qYLD3-1) and panicle length (qPL3-1) and on chromosome 6 for total grain yield/plant (qYLD6-1), flag leaf length (qFLL6-1) and panicle length (qPL6-1). Majority of the QTLs identified were observed to be co-localized with the previously reported QTL regions. Five novel, major effect QTLs associated with panicle weight (qPW9-1), plant height (qPH12-1), flag leaf width (qFLW4-1), panicle length (qPL3-1) and biomass (qBM4-1) and three novel minor effect QTLs for panicle weight (qPW3-1 and qPW8-1) and fertile grains per panicle (qFGP5-1) were identified. These QTLs can be used in breeding programs aimed to yield improvement after their validation in alternative populations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03045-7.

7.
Mol Biol Rep ; 48(12): 8075-8095, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34671902

RESUMO

Cancer immunotherapy is a rapidly evolving concept that has been given the tag "fifth pillar" of cancer therapy while radiation therapy, chemotherapy, surgery and targeted therapy remain the other four pillars. This involves the stimulation of the immune system to control tumor growth and it specifically targets the neoplastic cells rather than the normal cells. Conventional chemotherapy has many limitations which include drug resistance, recurrence of cancer and severe adverse effects. Immunology has made major treatment breakthroughs for several cancers such as colorectal cancer, prostate cancer, breast cancer, lung cancer, liver cancer, kidney cancer, stomach cancer, acute lymphoblastic leukaemia etc. Currently, therapeutic strategies harnessing the immune system involve Checkpoint inhibitors, Chimeric antigen receptor T cells (CAR T cells), Monoclonal antibodies, Cancer vaccines, Cytokines, Radio-immunotherapy and Oncolytic virus therapy. The molecular characterization of several tumor antigens (TA) indicates that these TA can be utilized as promising candidates in cancer immunotherapy strategies. Here in this review, we highlight and summarize the different categories of emerging cancer immunotherapies along with the immunologically recognized tumor antigens involved in the tumor microenvironment.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Anticorpos Monoclonais/farmacologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais , Humanos , Sistema Imunitário/efeitos dos fármacos , Fatores Imunológicos/imunologia , Imunoterapia/tendências , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Microambiente Tumoral/efeitos dos fármacos
8.
Front Oncol ; 11: 656804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336653

RESUMO

BACKGROUND: The ongoing treatment modalities for breast cancer (BC) primarily rely on the expression status of ER, PR and HER-2 receptors in BC tissues. Our strategy of chemosensitization provides new insights to counter chemoresistance, a major obstacle that limits the benefits of chemotherapy of mammary cancers. METHODS: By utilizing a murine breast cancer model employing NSG mice bearing orthotopic triple-negative breast cancer (TNBC) xenografts, we have evaluated the ability of phytochemical curcumin in chemosensitizing BC to 5-Fluorouracil (5-FU) chemotherapy and the differential modulations of cellular events in response to this strategy, independent of their receptor status. RESULTS: A significant synergistic antitumor potential was observed in the murine model with a sub-optimal dose treatment of 5-FU plus curcumin, as evaluated by a reduction in the tumor-related parameters. We authenticated the pivotal role of thymidylate synthase (TS) in regulating the 5-FU-curcumin synergism using the TNBC pre-clinical model. Our study also confirmed the pharmacological safety of this chemotherapeutic plus phytoactive combination using acute and chronic toxicity studies in Swiss albino mice. Subsequently, the molecular docking analysis of curcumin binding to TS demonstrated the affinity of curcumin towards the cofactor-binding site of TS, rather than the substrate-binding site, where 5-FU binds. Our concomitant in vivo and in silico evidence substantiates the superior therapeutic index of this combination. CONCLUSION: This is the first-ever pre-clinical study portraying TS as the critical target of combinatorial therapy for mammary carcinomas and therefore we recommend its clinical validation, especially in TNBC patients, who currently have limited therapeutic options.

9.
J Adv Res ; 30: 197-211, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026296

RESUMO

Introduction: Photosystem II (PSII) protein complex plays an essential role in the entire photosynthesis process. Various known and unknown protein factors are involved in the dynamics of the PSII complex that need to be characterized in crop plants for enhancing photosynthesis efficiency and productivity. Objectives: The experiments were conducted to decipher the regulatory proteins involved in PSII dynamics of rice crop. Methods: A novel rice regulatory protein PAP90 (PSII auxiliary protein ~90 kDa) was characterized by generating a loss-of-function mutant pap90. The mutation was characterized at molecular level followed by various experiments to analyze the morphological, physiological and biochemical processes of mutant under control and abiotic stresses. Results: The pap90 mutant showed reduced photosynthesis due to D1 protein instability that subsequently causes inadequate accumulation of thylakoid membrane complexes, especially PSII and decreases PSII functional efficiency. Expression of OsFtsH family genes and proteins were induced in the mutant, which are known to play a key role in D1 protein degradation and turnover. The reduced D1 protein accumulation in the mutant increased the production of reactive oxygen species (ROS). The accumulation of ROS along with the increased activity of antioxidant enzymes and induced expression of stress-associated genes and proteins in pap90 mutant contributed to its water-limited stress tolerance ability. Conclusion: We propose that PAP90 is a key auxiliary protein that interacts with D1 protein and maintains its stability, thereby promoting subsequent assembly of the PSII and associated membrane complexes.


Assuntos
Oryza/genética , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Oryza/metabolismo , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Estabilidade Proteica , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Tilacoides/genética
10.
Sci Rep ; 10(1): 21143, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273616

RESUMO

Improved-Samba-Mahsuri (ISM), a high-yielding, popular bacterial blight resistant (possessing Xa21, xa13, and xa5), fine-grain type, low glycemic index rice variety is highly sensitive to low soil phosphorus (P). We have deployed marker-assisted backcross breeding (MABB) approach for targeted transfer of Pup1, a major QTL associated with low soil P tolerance, using Swarna as a donor. A new co-dominant marker, K20-1-1, which is specific for Pup1 was designed and used for foreground selection along with functional markers specific for the bacterial blight resistance genes, Xa21, xa13, and xa5. A set of 66 polymorphic SSR marker were used for the background selection along with a pair of flanking markers for the recombination selection in backcross derived progenies and in BC2F2 generation, 12 plants, which are homozygous for Pup1, all the three bacterial blight resistance genes and possessing agro-morphological traits equivalent to or better than ISM were selected and selfed to produce BC2F3s. They were evaluated in plots with low soil P and normal soil P at ICAR-IIRR, Hyderabad for their low soil P tolerance, and bacterial blight resistance and superior lines were advanced to BC2F6. One of the lines, when tested at multiple locations in India was found promising under both normal as well as low soil P conditions.


Assuntos
Adaptação Fisiológica , Bactérias/patogenicidade , Produtos Agrícolas/fisiologia , Marcadores Genéticos/genética , Oryza/fisiologia , Fósforo/farmacologia , Solo/química , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Genes de Plantas , Índia , Oryza/genética , Oryza/microbiologia , Locos de Características Quantitativas
11.
Sci Rep ; 10(1): 13695, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792551

RESUMO

The study was undertaken to identify the quantitative trait loci (QTLs) governing yield and its related traits using a recombinant inbred line (RIL) population derived from the popular rice hybrid, KRH-2 (IR58025A/KMR3R). A genetic map spanning 294.2 cM was constructed with 126 simple sequence repeats (SSR) loci uniformly distributed across the rice genome. QTL analysis using phenotyping and genotyping information identified a total of 22 QTLs. Of these, five major effect QTLs were identified for the following traits: total grain yield/plant (qYLD3-1), panicle weight (qPW3-1), plant height (qPH12-1), flag leaf width (qFLW4-1) and panicle length (qPL3-1), explaining 20.23-22.76% of the phenotypic variance with LOD scores range of 6.5-10.59. Few genomic regions controlling several traits (QTL hotspot) were identified on chromosome 3 for total grain yield/plant (qYLD3-1) and panicle length (qPL3-1). Significant epistatic interactions were also observed for total grain yield per plant (YLD) and panicle length (PL). While most of these QTLs were observed to be co-localized with the previously reported QTL regions, a novel, major QTL associated with panicle length (qPL3-1) was also identified. SNP genotyping of selected high and low yielding RILs and their QTL mapping with 1,082 SNPs validated most of the QTLs identified through SSR genotyping. This facilitated the identification of novel major effect QTLs with much better resolution and precision. In-silico analysis of novel QTLs revealed the biological functions of the putative candidate gene (s) associated with selected traits. Most of the high-yielding RILs possessing the major yield related QTLs were identified to be complete restorers, indicating their possible utilization in development of superior rice hybrids.


Assuntos
Mapeamento Cromossômico/métodos , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas , Cromossomos de Plantas/genética , Simulação por Computador , Epistasia Genética , Ligação Genética , Endogamia , Repetições de Microssatélites , Oryza/genética , Polimorfismo de Nucleotídeo Único
12.
Ultramicroscopy ; 210: 112915, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31862505

RESUMO

An approach for producing ultrahigh spatial resolution selected area electron channeling patterns (UHR-SACPs) using the FEI/Thermo Elstar electron column is presented. The approach uses free lens control to directly assign lens and deflector values to rock the beam about precise points on the sample surface and generate the UHR-SACPs. Modification of the lens parameters is done using a service application that is preinstalled on the microscope or using the iFast scripting interface to run a short program to assign lens and deflector currents. Using the approach outlined here, the UHR-SACPs are collected at normal instrument scanning rates and pixel densities, resulting in rapid collection times and sharp patterns with simple push button changes in instrument mode. UHR-SACPs with spatial resolutions of 300 nm with angular ranges of 20° are demonstrated, as are patterns approaching 125 nm spatial resolution with angular ranges of 4°. Such spatial resolution/angular range combinations are significantly better than any reported previously. This approach for rapidly collecting high accuracy crystallographic information greatly enhances the ability to carry out electron channeling contrast imaging (ECCI) for a broad range of materials applications.

13.
3 Biotech ; 9(7): 278, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31245242

RESUMO

Interaction between gene products encoded by the cytoplasm and nucleus form the core of wild abortive cytoplasmic male sterile (WA-CMS) system of hybrid breeding in rice. Gaining insights into such interactions can be helpful in the development of better three-line rice hybrids and also identify novel male sterility systems. In the present study, the whole transcriptome profiles of immature florets of IR58025A, a WA-CMS line and its isonuclear maintainer line, IR58025B, collected at pre-anthesis stage were compared to delineate the pathways involved in pollen abortion and male sterility. Among the 774 differentially expressed transcripts (DETs), 496 were down regulated and 278 were up regulated in IR58025A compared to IR58025B. The genes associated with oxidative stress response, defense response, etc. were significantly up-regulated, while those associated with respiration, cell wall modifications, pectinesterase activity, etc. were significantly down-regulated in the WA-CMS line. Gene ontology and pathway enrichment analyses revealed the down-regulation of both nuclear and organellar genes involved in key metabolic processes of cell respiration, photosynthesis and other energy yielding metabolites in IR58025A, relative to IR58025B, indicating a general shift toward conservation of energy and other key resources in the florets of WA-CMS line. The data derived from RNA-Seq analysis were validated through qRT-PCR analysis. Based on the results obtained, it can be hypothesized that pollen abortion principally occurs due to up-regulation of pathways leading to oxidative stress leading to energy starvation conditions in consonance with reduced expression of genes associated with the cell wall formation, respiration, and other key metabolic processes.

14.
Plant Mol Biol ; 100(1-2): 59-71, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30796712

RESUMO

KEY MESSAGE: RNAi mediated silencing of pectin degrading enzyme of R. solani gives a high level of resistance against sheath blight disease of rice. Rice sheath blight disease caused by Rhizoctonia solani Kuhn (telemorph; Thanatephorus cucumeris) is one of the most devastating fungal diseases which cause severe loss to rice grain production. In the absence of resistant cultivars, the disease is currently managed through fungicides which add to environmental pollution. To explore the potential of utilizing RNA interference (RNAi)-mediated resistance against sheath blight disease, we identified genes encoding proteins and enzymes involved in the RNAi pathway in this fungal pathogen. The RNAi target genes were deciphered by RNAseq analysis of a highly virulent strain of the R. solani grown in pectin medium. Additionally, pectin metabolism associated genes of R. solani were analyzed through transcriptome sequencing of infected rice tissues obtained from six diverse rice cultivars. One of the key candidate gene AG1IA_04727 encoding polygalacturonase (PG), which was observed to be significantly upregulated during infection, was targeted through RNAi to develop disease resistance. Stable expression of PG-RNAi construct in rice showed efficient silencing of AG1IA_04727 and suppression of sheath blight disease. This study highlights important information about the existence of RNAi machinery and key genes of R. solani which can be targeted through RNAi to develop pathogen-derived resistance, thus opening an alternative strategy for developing sheath blight-resistant rice cultivars.


Assuntos
Resistência à Doença/genética , Oryza/genética , Oryza/microbiologia , Pectinas/farmacologia , Doenças das Plantas/microbiologia , Interferência de RNA , Rhizoctonia/genética , Transcriptoma/genética , Progressão da Doença , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Doenças das Plantas/genética , Poligalacturonase/genética , Poligalacturonase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhizoctonia/efeitos dos fármacos , Análise de Sequência de RNA , Transformação Genética
15.
Cancer Prev Res (Phila) ; 12(4): 225-236, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30760502

RESUMO

The rate of lung cancer incidence is alarmingly mounting, despite the decline of smoking and tobacco consumption. Recent reports indicate a very high correlation between the growing fast food culture and lung cancer incidence. Benzo[a]pyrene (B[a]P) is a potent carcinogen abundantly present in grilled and deep-fried food and in tobacco smoke. Our previous studies have proved the efficacy of curcumin in curbing B[a]P-induced lung carcinogenesis. However, the poor pharmacokinetic profile of the compound considerably hampers its potential as an effective chemopreventive. This study was intended to evaluate whether encapsulation of curcumin in chitosan nanoparticles can improve the cellular uptake and prolong the tissue retention of curcumin yielding better chemoprevention. The curcumin-loaded chitosan nanoparticles (chitosan nanocurcumin) exhibited a size of 170-200 nm in transmission electron microscopy. In vitro drug release studies showed sustained release of curcumin over a period of approximately 180 hours and excellent intracellular uptake and cytotoxicity in lung cancer cells. Bioavailability studies using healthy Swiss albino mice demonstrated drastic enhancement in lung localization of chitosan nanocurcumin compared with free curcumin. Toxicologic evaluation using chronic toxicity model in Swiss albino mice confirmed the pharmacologic safety of the formulation. Moreover, the formulation, even at a dose equivalent to one fourth that of free curcumin, exhibits better efficacy in reducing tumor incidence and multiplicity than free curcumin, thereby hampering development of B[a]P-induced lung adenocarcinomas in Swiss albino mice. Hence, our study underscores the supremacy of the formulation over free curcumin and establishes it as a potential chemopreventive and oral supplement against environmental carcinogenesis.


Assuntos
Antineoplásicos/farmacologia , Benzo(a)pireno/toxicidade , Quitosana/química , Curcumina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Antineoplásicos/química , Disponibilidade Biológica , Curcumina/química , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Nanopartículas/química
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 105-120, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30616164

RESUMO

The main objective of the study is to analyze the structural behaviour and fungicidal activity of clotrimazole by experimental and theoretical spectroscopic techniques. Its computational results are correlated with three triphenyl imidazole derivative compounds. The clotrimazole-water complexes formed by hydrogen bonding interactions are investigated at the B3LYP/6-311G(d,p) level. The distributions of the vibrational bands are carried out with the help of normal coordinate analysis (NCA). Hirshfeld surface analysis of clotrimazole is done and the obtained finger print plots reveal the interactions within the compound. The stability of the compounds in water has been investigated by using molecular dynamics simulation (MDS). Molecular docking is done on the compounds in comparison with the native ligand (Lanosterol 14α-demethylase) and standard drug (fluconazole) to study the hydrogen bond energy interaction. The antifungal activity of clotrimazole is analyzed by using two fungal pathogens.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Simulação de Dinâmica Molecular , Clotrimazol/química , Clotrimazol/farmacologia , Fungos/efeitos dos fármacos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Vibração
17.
Virology ; 526: 117-124, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30388627

RESUMO

Rice tungro disease is caused by the combined action of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). The RTBV is involved in the development of symptoms while RTSV is essential for virus transmission. We attempted to study the mode of action of RTBV in the development of symptoms. The tungro disease symptoms were attributed to viral interference in chlorophyll and carotenoids biosynthesis, photosynthesis machinery, iron/zinc homeostasis, and the genes encoding the enzymes associated with these biological processes of rice. The adverse effects of virus infection in photosystem II (PSII) activity was demonstrated by analyzing the Fv/Fm ratio, expression of psbA and cab1R genes, and direct interaction of RTBV ORF I protein with the D1 protein of rice. Since ORF I function is not yet known in the RTBV life cycle, this is the first report showing its involvement in regulating host photosynthesis process and symptoms development.


Assuntos
Homeostase/genética , Insetos Vetores/virologia , Oryza/virologia , Complexo de Proteína do Fotossistema II/metabolismo , Doenças das Plantas/virologia , Tungrovirus/fisiologia , Proteínas Virais/metabolismo , Animais , Meios de Cultura/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Ferro/química , Ferro/metabolismo , Fases de Leitura Aberta , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Tungrovirus/genética , Proteínas Virais/genética , Waikavirus/fisiologia , Zinco/química , Zinco/metabolismo
18.
Mol Biol Rep ; 46(1): 727-740, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30554314

RESUMO

The current treatment system in cancer therapy, which includes chemotherapy/radiotherapy is expensive and often deleterious to surrounding healthy tissue. Presently, several medicinal plants and their constituents are in use to manage the development and progression of these diseases.They have been found effective, safe, and less expensive. In the present study, we are proposing the utility of a new class of curcumin derivative, Rubrocurcumin, the spiroborate ester of curcumin with boric acid and oxalic acid (1:1:1), which have enhanced biostability for therapeutic applications. In vitro cytocompatibility of this drug complex was analysed using MTT assay, neutral red assay, lactate dehydrogenase assay in 3T3L1 adipocytes. Anti tumour activity of this drug complex on MCF7 and A431 human cancer cell line was studied by morphological analysis using phase contrast microscopy, Hoechst staining and cell cycle analysis by FACS. To explore the chemotherapeutic effect, the cytotoxic effect of this compound was also carried out. Rubrocurcumin is more biostable than natural curcumin in physiological medium. Our results prove that this curcumin derivative drug complex possess more efficacy and anti-cancer activity compared with curcumin. The findings out of this study suggests this novel compound as potential candidate for site targeted drug delivery.


Assuntos
Antineoplásicos/farmacologia , Ésteres/farmacologia , Modelos Biológicos , Compostos de Espiro/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Forma Celular/efeitos dos fármacos , Curcumina/química , Curcumina/farmacologia , Fluorescência , Hidrólise , Cinética , Camundongos , Espectrometria de Fluorescência , Compostos de Espiro/química
19.
Plant Physiol Biochem ; 130: 258-266, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30029184

RESUMO

The devastating sheath blight disease caused by Rhizoctonia solani Kuhn (teleomorph: Thanatephorus cucumeris) causes major yield loss in most rice growing regions of the world. In this study, two moderately tolerant and four susceptible genotypes of rice were selected for R. solani induced proteome analysis using two-dimensional polyacrylamide gel electrophoresis. Forty five differentially expressed proteins (DEPs) were identified and analyzed by Mass Spectrometry. Based on their functions, these proteins were classified into different groups, viz., photosynthesis, resistance and pathogenesis, stress, cell wall metabolism and cytoskeleton development associated proteins, and hypothetical or uncharacterized proteins. Expression of 14 genes encoding DEPs was analyzed by quantitative PCR which showed consistency in transcripts and genes expression pattern. Furthermore, the expression of 16 other genes involved in diverse biological functions was analyzed. Up-regulation of these genes in the tolerant genotype Pankaj during sheath blight disease suggested efficient genetic regulation of this cultivar under stress. Also, expression analysis of conserved microRNAs (miRNAs) and their target genes revealed important role of miRNAs in post-transcriptional gene regulation during development of rice sheath blight disease. Genome-wide discovery of miRNAs and further characterization of DEPs and genes will help in better understanding of the molecular events during sheath blight disease development in rice.


Assuntos
Resistência à Doença/genética , Oryza/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Rhizoctonia , Simulação por Computador , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Genótipo , Focalização Isoelétrica/métodos , Oryza/microbiologia , Mapeamento de Peptídeos , Doenças das Plantas/genética , Proteínas de Plantas/fisiologia , Proteômica/métodos , Reação em Cadeia da Polimerase em Tempo Real
20.
J Mol Model ; 24(6): 126, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728872

RESUMO

Noncentrosymmetric π conjugated systems with suitable electron donor acceptor groups play a crucial role in material NLO activity. The influence of an electron donating mono substituent at the para position of the phenylene ring of chalcone was investigated as a resource for second harmonic generation. The geometrical optimization of 11 electron donating group substituted chalcones were performed using density functional theory at the B3LYP/6-311G(d,p) level and compared with experimental geometrical parameters of five reported chalcones. All the derivatives are transparent to visible radiation as shown by the electronic absorption spectra investigated by the TDDFT-CAM B3LYP/6-311G(d,p) method, and the maximum absorption wavelength was due to the πPhB → π* transition. The first order hyperpolarizability ßtot, calculated using the CAM B3LYP/6-311G(d,p) method, increases with the electron donating ability of the substituent, and the largest ßtot was observed for dimethylamino substituent. The Hammett substituent constant (σp) shows good linear correlation with ß, λmax, and Egap in the ground state. The Brown constant (σp+) was better correlated indicating the polarization of carbonyl group in the excited state. Frontier molecular orbitals also reveal the valence electron excitation. Correlation of σp with various parameters was analyzed to assess the property interrelationship with electronic reorganization in the molecule. The electronic structures of molecular fragments were described in terms of natural bond orbital analysis, which shows intramolecular interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...