Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 249(0): 84-97, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37791454

RESUMO

Natural minerals contain ions that become hydrated when they come into contact with water in vapor and liquid forms. Muscovite mica - a common phyllosilicate with perfect cleavage planes - is an ideal system to investigate the details of ion hydration. The cleaved mica surface is decorated by an array of K+ ions that can be easily exchanged with other ions or protons when immersed in an aqueous solution. Despite the vast interest in the atomic-scale hydration processes of these K+ ions, experimental data under controlled conditions have remained elusive. Here, atomically resolved non-contact atomic force microscopy (nc-AFM) is combined with X-ray photoelectron spectroscopy (XPS) to investigate the cation hydration upon dosing water vapor at 100 K in ultra-high vacuum (UHV). The cleaved surface is further exposed to ultra-clean liquid water at room temperature, which promotes ion mobility and partial ion-to-proton substitution. The results offer the first direct experimental views of the interaction of water with muscovite mica under UHV. The findings are in line with previous theoretical predictions.

2.
J Phys Chem Lett ; 14(13): 3258-3265, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36976170

RESUMO

The (111) facet of magnetite (Fe3O4) has been studied extensively by experimental and theoretical methods, but controversy remains regarding the structure of its low-energy surface terminations. Using density functional theory (DFT) computations, we demonstrate three reconstructions that are more favorable than the accepted Feoct2 termination under reducing conditions. All three structures change the coordination of iron in the kagome Feoct1 layer to be tetrahedral. With atomically resolved microscopy techniques, we show that the termination that coexists with the Fetet1 termination consists of tetrahedral iron capped by 3-fold coordinated oxygen atoms. This structure explains the inert nature of the reduced patches.

3.
Nat Commun ; 14(1): 208, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639388

RESUMO

Muscovite mica, KAl2(Si3Al)O10(OH)2, is a common layered phyllosilicate with perfect cleavage planes. The atomically flat surfaces obtained through cleaving lend themselves to scanning probe techniques with atomic resolution and are ideal to model minerals and clays. Despite the importance of the cleaved mica surfaces, several questions remain unresolved. It is established that K+ ions decorate the cleaved surface, but their intrinsic ordering - unaffected by the interaction with the environment - is not known. This work presents clear images of the K+ distribution of cleaved mica obtained with low-temperature non-contact atomic force microscopy (AFM) under ultra-high vacuum (UHV) conditions. The data unveil the presence of short-range ordering, contrasting previous assumptions of random or fully ordered distributions. Density functional theory (DFT) calculations and Monte Carlo simulations show that the substitutional subsurface Al3+ ions have an important role for the surface K+ ion arrangement.

4.
Nat Commun ; 12(1): 6488, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34759277

RESUMO

Oxygen exchange at oxide/liquid and oxide/gas interfaces is important in technology and environmental studies, as it is closely linked to both catalytic activity and material degradation. The atomic-scale details are mostly unknown, however, and are often ascribed to poorly defined defects in the crystal lattice. Here we show that even thermodynamically stable, well-ordered surfaces can be surprisingly reactive. Specifically, we show that all the 3-fold coordinated lattice oxygen atoms on a defect-free single-crystalline "r-cut" ([Formula: see text]) surface of hematite (α-Fe2O3) are exchanged with oxygen from surrounding water vapor within minutes at temperatures below 70 °C, while the atomic-scale surface structure is unperturbed by the process. A similar behavior is observed after liquid-water exposure, but the experimental data clearly show most of the exchange happens during desorption of the final monolayer, not during immersion. Density functional theory computations show that the exchange can happen during on-surface diffusion, where the cost of the lattice oxygen extraction is compensated by the stability of an HO-HOH-OH complex. Such insights into lattice oxygen stability are highly relevant for many research fields ranging from catalysis and hydrogen production to geochemistry and paleoclimatology.

5.
J Chem Phys ; 153(14): 144705, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33086829

RESUMO

High-performance photocathodes for many prominent particle accelerator applications, such as x-ray free-electron lasers, cannot be grown in situ. These highly reactive materials must be grown and then transported to the electron gun in an ultrahigh-vacuum (UHV) suitcase, during which time monolayer-level oxidation is unavoidable. Thin film Cs3Sb photocathodes were grown on a variety of substrates. Their performance and chemical state were measured by x-ray photoelectron spectroscopy after transport in a UHV suitcase as well as after O2-induced oxidation. The unusual chemistry of cesium oxides enabled trace amounts of oxygen to drive structural reorganization at the photocathode surface. This reorganization pulled cesium from the bulk photocathode, leading to the development of a structurally complex and O2-exposure-dependent cesium oxide layer. This oxidation-induced phase segregation led to downward band bending of at least 0.36 eV as measured from shifts in the Cs 3d5/2 binding energy. At low O2 exposures, the surface developed a low work function cesium suboxide overlayer that had little effect on quantum efficiency (QE). At somewhat higher O2 exposures, the overlayer transformed to Cs2O; no antimony or antimony oxides were observed in the near-surface region. The development of this overlayer was accompanied by a 1000-fold decrease in QE, which effectively destroyed the photocathode via the formation of a tunnel barrier. The O2 exposures necessary for degradation were quantified. As little as 100 L of O2 irreversibly damaged the photocathode. These observations are discussed in the context of the rich chemistry of alkali oxides, along with potential material strategies for photocathode improvement.

6.
Angew Chem Int Ed Engl ; 59(49): 21904-21908, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729209

RESUMO

Establishing the atomic-scale structure of metal-oxide surfaces during electrochemical reactions is a key step to modeling this important class of electrocatalysts. Here, we demonstrate that the characteristic (√2×√2)R45° surface reconstruction formed on (001)-oriented magnetite single crystals is maintained after immersion in 0.1 M NaOH at 0.20 V vs. Ag/AgCl and we investigate its dependence on the electrode potential. We follow the evolution of the surface using in situ and operando surface X-ray diffraction from the onset of hydrogen evolution, to potentials deep in the oxygen evolution reaction (OER) regime. The reconstruction remains stable for hours between -0.20 and 0.60 V and, surprisingly, is still present at anodic current densities of up to 10 mA cm-2 and strongly affects the OER kinetics. We attribute this to a stabilization of the Fe3 O4 bulk by the reconstructed surface. At more negative potentials, a gradual and largely irreversible lifting of the reconstruction is observed due to the onset of oxide reduction.

7.
Chemphyschem ; 21(16): 1788-1796, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32639106

RESUMO

Difficulties associated with the integration of liquids into a UHV environment make surface-science style studies of mineral dissolution particularly challenging. Recently, we developed a novel experimental setup for the UHV-compatible dosing of ultrapure liquid water and studied its interaction with TiO2 and Fe3 O4 surfaces. Herein, we describe a simple approach to vary the pH through the partial pressure of CO2 ( p C O 2 ) in the surrounding vacuum chamber and use this to study how these surfaces react to an acidic solution. The TiO2 (110) surface is unaffected by the acidic solution, except for a small amount of carbonaceous contamination. The Fe3 O4 (001)-( 2 × 2 )R45° surface begins to dissolve at a pH 4.0-3.9 ( p C O 2 =0.8-1 bar) and, although it is significantly roughened, the atomic-scale structure of the Fe3 O4 (001) surface layer remains visible in scanning tunneling microscopy (STM) images. X-ray photoelectron spectroscopy (XPS) reveals that the surface is chemically reduced and contains a significant accumulation of bicarbonate (HCO3 - ) species. These observations are consistent with Fe(II) being extracted by bicarbonate ions, leading to dissolved iron bicarbonate complexes (Fe(HCO3 )2 ), which precipitate onto the surface when the water evaporates.

8.
J Chem Phys ; 151(15): 154702, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640372

RESUMO

Atomic-scale investigations of metal oxide surfaces exposed to aqueous environments are vital to understand degradation phenomena (e.g., dissolution and corrosion) as well as the performance of these materials in applications. Here, we utilize a new experimental setup for the ultrahigh vacuum-compatible dosing of liquids to explore the stability of the Fe3O4(001)-(√2 × âˆš2)R45° surface following exposure to liquid and ambient pressure water. X-ray photoelectron spectroscopy and low-energy electron diffraction data show that extensive hydroxylation causes the surface to revert to a bulklike (1 × 1) termination. However, scanning tunneling microscopy (STM) images reveal a more complex situation, with the slow growth of an oxyhydroxide phase, which ultimately saturates at approximately 40% coverage. We conclude that the new material contains OH groups from dissociated water coordinated to Fe cations extracted from subsurface layers and that the surface passivates once the surface oxygen lattice is saturated with H because no further dissociation can take place. The resemblance of the STM images to those acquired in previous electrochemical STM studies leads us to believe that a similar structure exists at the solid-electrolyte interface during immersion at pH 7.

9.
Rev Sci Instrum ; 89(8): 083906, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184714

RESUMO

The structure of the solid-liquid interface often defines the function and performance of materials in applications. To study this interface at the atomic scale, we extended an ultrahigh vacuum (UHV) surface-science chamber with an apparatus that allows bringing a surface in contact with ultrapure liquid water without exposure to air. In this process, a sample, typically a single crystal prepared and characterized in UHV, is transferred into a separate, small chamber. This chamber already contains a volume of ultrapure water ice. The ice is at cryogenic temperature, which reduces its vapor pressure to the UHV range. Upon warming, the ice melts and forms a liquid droplet, which is deposited on the sample. In test experiments, a rutile TiO2(110) single crystal exposed to liquid water showed unprecedented surface purity, as established by X-ray photoelectron spectroscopy and scanning tunneling microscopy. These results enabled us to separate the effect of pure water from the effect of low-level impurities present in the air. Other possible uses of the setup are discussed.

10.
Science ; 361(6404): 786-789, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30139869

RESUMO

Researchers around the world have observed the formation of molecularly ordered structures of unknown origin on the surface of titanium dioxide (TiO2) photocatalysts exposed to air and solution. Using a combination of atomic-scale microscopy and spectroscopy, we show that TiO2 selectively adsorbs atmospheric carboxylic acids that are typically present in parts-per-billion concentrations while effectively repelling other adsorbates, such as alcohols, that are present in much higher concentrations. The high affinity of the surface for carboxylic acids is attributed to their bidentate binding. These self-assembled monolayers have the unusual property of being both hydrophobic and highly water-soluble, which may contribute to the self-cleaning properties of TiO2 This finding is relevant to TiO2 photocatalysis, because the self-assembled carboxylate monolayers block the undercoordinated surface cation sites typically implicated in photocatalysis.

11.
Nanoscale ; 10(5): 2226-2230, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29334395

RESUMO

Accurately modelling the structure of a catalyst is a fundamental prerequisite for correctly predicting reaction pathways, but a lack of clear experimental benchmarks makes it difficult to determine the optimal theoretical approach. Here, we utilize the normal incidence X-ray standing wave (NIXSW) technique to precisely determine the three dimensional geometry of Ag1 and Cu1 adatoms on Fe3O4(001). Both adatoms occupy bulk-continuation cation sites, but with a markedly different height above the surface (0.43 ± 0.03 Å (Cu1) and 0.96 ± 0.03 Å (Ag1)). HSE-based calculations accurately predict the experimental geometry, but the more common PBE + U and PBEsol + U approaches perform poorly.

12.
J Phys Chem C Nanomater Interfaces ; 121(47): 26424-26431, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29285204

RESUMO

The rutile TiO2(011) surface exhibits a (2 × 1) reconstruction when prepared by standard techniques in ultrahigh vacuum (UHV). Here we report that a restructuring occurs upon exposing the surface to liquid water at room temperature. The experiment was performed in a dedicated UHV system, equipped for direct and clean transfer of samples between UHV and liquid environment. After exposure to liquid water, an overlayer with a (2 × 1) symmetry was observed containing two dissociated water molecules per unit cell. The two OH groups yield an apparent "c(2 × 1)" symmetry in scanning tunneling microscopy (STM) images. On the basis of STM analysis and density functional theory (DFT) calculations, this overlayer is attributed to dissociated water on top of the unreconstructed (1 × 1) surface. Investigation of possible adsorption structures and analysis of the domain boundaries in this structure provide strong evidence that the original (2 × 1) reconstruction is lifted. Unlike the (2 × 1) reconstruction, the (1 × 1) surface has an appropriate density and symmetry of adsorption sites. The possibility of contaminant-induced restructuring was excluded based on X-ray photoelectron spectroscopy (XPS) and low-energy He+ ion scattering (LEIS) measurements.

13.
J Phys Chem C Nanomater Interfaces ; 121(36): 19743-19750, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28936277

RESUMO

Electrochemical surface science of oxides is an emerging field with expected high impact in developing, for instance, rationally designed catalysts. The aim in such catalysts is to replace noble metals by earth-abundant elements, yet without sacrificing activity. Gaining an atomic-level understanding of such systems hinges on the use of experimental surface characterization techniques such as scanning tunneling microscopy (STM), in which tungsten tips have been the most widely used probes, both in vacuum and under electrochemical conditions. Here, we present an in situ STM study with atomic resolution that shows how tungsten(VI) oxide, spontaneously generated at a W STM tip, forms 1D adsorbates on oxide substrates. By comparing the behavior of rutile TiO2(110) and magnetite Fe3O4(001) in aqueous solution, we hypothesize that, below the point of zero charge of the oxide substrate, electrostatics causes water-soluble WO3 to efficiently adsorb and form linear chains in a self-limiting manner up to submonolayer coverage. The 1D oligomers can be manipulated and nanopatterned in situ with a scanning probe tip. As WO3 spontaneously forms under all conditions of potential and pH at the tungsten-aqueous solution interface, this phenomenon also identifies an important caveat regarding the usability of tungsten tips in electrochemical surface science of oxides and other highly adsorptive materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...