Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Med Chem ; 64(17): 12893-12902, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34448571

RESUMO

This publication details the successful use of FBDD (fragment-based drug discovery) principles in the invention of a novel covalent Bruton's tyrosine kinase inhibitor, which ultimately became the Takeda Pharmaceuticals clinical candidate TAK-020. Described herein are the discovery of the fragment 5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one, the subsequent optimization of this hit molecule to the candidate, and synthesis and performance in pharmacodynamic and efficacy models along with direct biophysical comparison of TAK-020 with other clinical-level assets and the marketed drug Ibrutinib.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Artrite Experimental/tratamento farmacológico , Desenho de Fármacos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Animais , Colágeno/toxicidade , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/química , Humanos , Ratos
3.
J Pharmacol Exp Ther ; 371(2): 299-308, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31537613

RESUMO

Target-engagement pharmacodynamic (PD) biomarkers are valuable tools in the prioritization of drug candidates, especially for novel, first-in-class mechanisms whose robustness to alter disease outcome is unknown. Methionine aminopeptidase 2 (MetAP2) is a cytosolic metalloenzyme that cleaves the N-terminal methionine from nascent proteins. Inhibition of MetAP2 leads to weight loss in obese rodents, dogs and humans. However, there is a need to develop efficacious compounds that specifically inhibit MetAP2 with an improved safety profile. The objective of this study was to identify a PD biomarker for selecting potent, efficacious compounds and for predicting clinical efficacy that would result from inhibition of MetAP2. Here we report the use of NMet14-3-3γ for this purpose. Treatment of primary human cells with MetAP2 inhibitors resulted in an approx. 10-fold increase in NMet14-3-3γ levels. Furthermore, treatment of diet-induced obese mice with these compounds reduced body weight (approx. 20%) and increased NMet14-3-3γ (approx. 15-fold) in adipose tissues. The effects on target engagement and body weight increased over time and were dependent on dose and administration frequency of compound. The relationship between compound concentration in plasma, NMet14-3-3γ in tissue, and reduction of body weight in obese mice was used to generate a pharmacokinetic-pharmacodynamic-efficacy model for predicting efficacy of MetAP2 inhibitors in mice. We also developed a model for predicting weight loss in humans using a target engagement PD assay that measures inhibitor-bound MetAP2 in blood. In summary, MetAP2 target engagement biomarkers can be used to select efficacious compounds and predict weight loss in humans. SIGNIFICANCE STATEMENT: The application of target engagement pharmacodynamic biomarkers during drug development provides a means to determine the dose required to fully engage the intended target and an approach to connect the drug target to physiological effects. This work exemplifies the process of using target engagement biomarkers during preclinical research to select new drug candidates and predict clinical efficacy. We determine concentration of MetAP2 antiobesity compounds needed to produce pharmacological activity in primary human cells and in target tissues from an appropriate animal model and establish key relationships between pharmacokinetics, pharmacodynamics, and efficacy, including the duration of effects after drug administration. The biomarkers described here can aid decision-making in early clinical trials of MetAP2 inhibitors for the treatment of obesity.


Assuntos
Clorobenzenos/farmacologia , Cinamatos/farmacologia , Cicloexanos/farmacologia , Compostos de Epóxi/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Metionil Aminopeptidases/antagonistas & inibidores , Metionil Aminopeptidases/metabolismo , Sesquiterpenos/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Biomarcadores/metabolismo , Clorobenzenos/química , Cinamatos/química , Cicloexanos/química , Relação Dose-Resposta a Droga , Compostos de Epóxi/química , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Valor Preditivo dos Testes , Sesquiterpenos/química , Resultado do Tratamento
4.
Mol Metab ; 20: 89-101, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553772

RESUMO

OBJECTIVE: Atherosclerosis is a major cause of cardiovascular disease. Monocyte-endothelial cell interactions are partly mediated by expression of monocyte CX3CR1 and endothelial cell fractalkine (CX3CL1). Interrupting the interaction between this ligand-receptor pair should reduce monocyte binding to the endothelial wall and reduce atherosclerosis. We sought to reduce atherosclerosis by preventing monocyte-endothelial cell interactions through use of a long-acting CX3CR1 agonist. METHODS: In this study, the chemokine domain of CX3CL1 was fused to the mouse Fc region to generate a long-acting soluble form of CX3CL1 suitable for chronic studies. CX3CL1-Fc or saline was injected twice a week (30 mg/kg) for 4 months into Ldlr knockout (KO) mice on an atherogenic western diet. RESULTS: CX3CL1-Fc-treated Ldlr KO mice showed decreased en face aortic lesion surface area and reduced aortic root lesion size with decreased necrotic core area. Flow cytometry analyses of CX3CL1-Fc-treated aortic wall cell digests revealed a decrease in M1-like polarized macrophages and T cells. Moreover, CX3CL1-Fc administration reduced diet-induced atherosclerosis after switching from an atherogenic to a normal chow diet. In vitro monocyte adhesion studies revealed that CX3CL1-Fc treatment caused fewer monocytes to adhere to a human umbilical vein endothelial cell monolayer. Furthermore, a dorsal window chamber model demonstrated that CX3CL1-Fc treatment decreased in vivo leukocyte adhesion and rolling in live capillaries after short-term ischemia-reperfusion. CONCLUSION: These results indicate that CX3CL1-Fc can inhibit monocyte/endothelial cell adhesion as well as reduce atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Quimiocina CX3CL1/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Animais , Aorta/patologia , Aterosclerose/genética , Aterosclerose/prevenção & controle , Células Cultivadas , Quimiocina CX3CL1/genética , Fragmentos Fc das Imunoglobulinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/prevenção & controle , Receptores de LDL/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
5.
J Clin Invest ; 128(4): 1458-1470, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29504946

RESUMO

We have previously reported that the fractalkine (FKN)/CX3CR1 system represents a novel regulatory mechanism for insulin secretion and ß cell function. Here, we demonstrate that chronic administration of a long-acting form of FKN, FKN-Fc, can exert durable effects to improve glucose tolerance with increased glucose-stimulated insulin secretion and decreased ß cell apoptosis in obese rodent models. Unexpectedly, chronic FKN-Fc administration also led to decreased α cell glucagon secretion. In islet cells, FKN inhibited ATP-sensitive potassium channel conductance by an ERK-dependent mechanism, which triggered ß cell action potential (AP) firing and decreased α cell AP amplitude. This results in increased glucose-stimulated insulin secretion and decreased glucagon secretion. Beyond its islet effects, FKN-Fc also exerted peripheral effects to enhance hepatic insulin sensitivity due to inhibition of glucagon action. In hepatocytes, FKN treatment reduced glucagon-stimulated cAMP production and CREB phosphorylation in a pertussis toxin-sensitive manner. Together, these results raise the possibility of use of FKN-based therapy to improve type 2 diabetes by increasing both insulin secretion and insulin sensitivity.


Assuntos
Glicemia/metabolismo , Quimiocina CX3CL1/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Animais , Glicemia/genética , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Quimiocina CX3CL1/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Fragmentos Fc das Imunoglobulinas/genética , Secreção de Insulina/genética , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética
6.
Mol Cancer Ther ; 16(7): 1269-1278, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28341789

RESUMO

Receptor tyrosine kinase therapies have proven to be efficacious in specific cancer patient populations; however, a significant limitation of tyrosine kinase inhibitor (TKI) treatment is the emergence of resistance mechanisms leading to a transient, partial, or complete lack of response. Combination therapies using agents with synergistic activity have potential to improve response and reduce acquired resistance. Chemoreagent or TKI treatment can lead to increased expression of hepatocyte growth factor (HGF) and/or MET, and this effect correlates with increased metastasis and poor prognosis. Despite MET's role in resistance and cancer biology, MET TKI monotherapy has yielded disappointing clinical responses. In this study, we describe the biological activity of a selective, oral MET TKI with slow off-rate and its synergistic antitumor effects when combined with an anti-HGF antibody. We evaluated the combined action of simultaneously neutralizing HGF ligand and inhibiting MET kinase activity in two cancer xenograft models that exhibit autocrine HGF/MET activation. The combination therapy results in additive antitumor activity in KP4 pancreatic tumors and synergistic activity in U-87MG glioblastoma tumors. Pharmacodynamic characterization of biomarkers that correlate with combination synergy reveal that monotherapies induce an increase in the total MET protein, whereas combination therapy significantly reduces total MET protein levels and phosphorylation of 4E-BP1. These results hold promise that dual targeting of HGF and MET by combining extracellular ligand inhibitors with intracellular MET TKIs could be an effective intervention strategy for cancer patients who have acquired resistance that is dependent on total MET protein. Mol Cancer Ther; 16(7); 1269-78. ©2017 AACR.


Assuntos
Glioblastoma/tratamento farmacológico , Fator de Crescimento de Hepatócito/genética , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-met/genética , Bibliotecas de Moléculas Pequenas/administração & dosagem , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Glioblastoma/genética , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Humanos , Camundongos , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Bioorg Med Chem Lett ; 27(4): 1099-1104, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28082036

RESUMO

Axl has been a target of interest in the oncology field for several years based on its role in various oncogenic processes. To date, no wild-type Axl crystal structure has been reported. Herein, we describe the structure-based optimization of a novel chemotype of Axl inhibitors, 1H-imidazole-2-carboxamide, using a mutated kinase homolog, Mer(I650M), as a crystallographic surrogate. Iterative optimization of the initial lead compound (1) led to compound (21), a selective and potent inhibitor of wild-type Axl. Compound (21) will serve as a useful compound for further in vivo studies.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Cristalografia por Raios X , Estrutura Molecular , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
8.
Mol Cancer Ther ; 12(4): 460-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23358665

RESUMO

Protein kinases Aurora A, B, and C play essential roles during mitosis and cell division, are frequently elevated in cancer, and represent attractive targets for therapeutic intervention. TAK-901 is an investigational, multitargeted Aurora B kinase inhibitor derived from a novel azacarboline kinase hinge-binder chemotype. TAK-901 exhibited time-dependent, tight-binding inhibition of Aurora B, but not Aurora A. Consistent with Aurora B inhibition, TAK-901 suppressed cellular histone H3 phosphorylation and induced polyploidy. In various human cancer cell lines, TAK-901 inhibited cell proliferation with effective concentration values from 40 to 500 nmol/L. Examination of a broad panel of kinases in biochemical assays revealed inhibition of multiple kinases. However, TAK-901 potently inhibited only a few kinases other than Aurora B in intact cells, including FLT3 and FGFR2. In rodent xenografts, TAK-901 exhibited potent activity against multiple human solid tumor types, and complete regression was observed in the ovarian cancer A2780 model. TAK-901 also displayed potent activity against several leukemia models. In vivo biomarker studies showed that TAK-901 induced pharmacodynamic responses consistent with Aurora B inhibition and correlating with retention of TAK-901 in tumor tissue. These preclinical data highlight the therapeutic potential of TAK-901, which has entered phase I clinical trials in patients within a diverse range of cancers.


Assuntos
Carbolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Sulfonas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Aurora Quinase A , Aurora Quinase B , Aurora Quinases , Biomarcadores , Carbolinas/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Histonas/metabolismo , Humanos , Cinética , Camundongos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Sulfonas/química , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nat Immunol ; 3(4): 373-82, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11919579

RESUMO

The mechanisms that regulate susceptibility to virus-induced autoimmunity remain undefined. We establish here a fundamental link between the responsiveness of target pancreatic beta cells to interferons (IFNs) and prevention of coxsackievirus B4 (CVB4)-induced diabetes. We found that an intact beta cell response to IFNs was critical in preventing disease in infected hosts. The antiviral defense, raised by beta cells in response to IFNs, resulted in a reduced permissiveness to infection and subsequent natural killer (NK) cell-dependent death. These results show that beta cell defenses are critical for beta cell survival during CVB4 infection and suggest an important role for IFNs in preserving NK cell tolerance to beta cells during viral infection. Thus, alterations in target cell defenses can critically influence susceptibility to disease.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Enterovirus Humano B/imunologia , Infecções por Enterovirus/imunologia , Peptídeos e Proteínas de Sinalização Intracelular , Ilhotas Pancreáticas/imunologia , Proteínas Repressoras , Animais , Linfócitos T CD8-Positivos/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Linhagem Celular , Proteínas de Ligação a DNA/imunologia , Diabetes Mellitus Tipo 1/virologia , Resistência a Medicamentos , Humanos , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Ilhotas Pancreáticas/virologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fator de Transcrição STAT1 , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina , Transativadores/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...