Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 24(20): 5293-5302, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29165842

RESUMO

Nitrogenases catalyse nitrogen fixation to ammonia on a multinuclear Fe-Mo centre, but their mechanism and particularly the order of proton and electron transfer processes that happen during the catalytic cycle is still unresolved. Recently, a unique biomimetic mononuclear iron model was developed using tris(phosphine)borate (TPB) ligands that was shown to convert N2 into NH3 . Herein, we present a computational study on the [(TPB)FeN2 ]- complex and describe its conversion into ammonia through the addition of electrons and protons. In particular, we tested the consecutive proton transfer on only the distal nitrogen atom or alternated protonation of the distal/proximal nitrogen. It is found that the lowest energy pathway is consecutive addition of three protons to the same site, which forms ammonia and an iron-nitrido complex. In addition, the proton transfer step of complexes with the metal in various oxidation and spin states were tested and show that the pKa values of biomimetic mononuclear nitrogenase intermediates vary little with iron oxidation states. As such, the model gives several possible NH3 formation pathways depending on the order of electron/proton transfer, and all should be physically accessible in the natural system. These results may have implications for enzymatic nitrogenases and give insight into the catalytic properties of mononuclear iron centres.


Assuntos
Amônia/química , Ferro/química , Modelos Moleculares , Nitrogênio/química , Materiais Biomiméticos/química , Boratos/química , Catálise , Complexos de Coordenação/química , Transporte de Elétrons , Elétrons , Compostos Férricos/química , Ligantes , Nitrogenase/química , Oxirredução , Fosfinas/química , Prótons
2.
Chemistry ; 22(51): 18608-18619, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27727524

RESUMO

Cytochrome P450 enzymes are heme-containing mono-oxygenases that mainly react through oxygen-atom transfer. Specific features of substrate and oxidant that determine the reaction rate constant for oxygen atom transfer are still poorly understood and therefore, we did a systematic gas-phase study on reactions by iron(IV)-oxo porphyrin cation radical structures with arenes. We present herein the first results obtained by using Fourier transform-ion cyclotron resonance mass spectrometry and provide rate constants and product distributions for the assayed reactions. Product distributions and kinetic isotope effect studies implicate a rate-determining aromatic hydroxylation reaction that correlates with the ionization energy of the substrate and no evidence of aliphatic hydroxylation products is observed. To further understand the details of the reaction mechanism, a computational study on a model complex was performed. These studies confirm the experimental hypothesis of dominant aromatic over aliphatic hydroxylation and show that the lack of an axial ligand affects the aliphatic pathways. Moreover, a two-parabola valence bond model is used to rationalize the rate constant and identify key properties of the oxidant and substrate that drive the reaction. In particular, the work shows that aromatic hydroxylation rates correlate with the ionization energy of the substrate as well as with the electron affinity of the oxidant.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Heme/química , Hidroxilação , Oxidantes/química , Cinética , Ligantes , Espectrometria de Massas , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...