Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 74(3): 534-44, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23452317

RESUMO

Increased phenotyping accuracy and throughput are necessary to improve our understanding of quantitative variation and to be able to deconstruct complex traits such as those involved in growth responses to the environment. Still, only a few facilities are known to handle individual plants of small stature for non-destructive, real-time phenotype acquisition from plants grown in precisely adjusted and variable experimental conditions. Here, we describe Phenoscope, a high-throughput phenotyping platform that has the unique feature of continuously rotating 735 individual pots over a table. It automatically adjusts watering and is equipped with a zenithal imaging system to monitor rosette size and expansion rate during the vegetative stage, with automatic image analysis allowing manual correction. When applied to Arabidopsis thaliana, we show that rotating the pots strongly reduced micro-environmental disparity: heterogeneity in evaporation was cut by a factor of 2.5 and the number of replicates needed to detect a specific mild genotypic effect was reduced by a factor of 3. In addition, by controlling a large proportion of the micro-environmental variance, other tangible sources of variance become noticeable. Overall, Phenoscope makes it possible to perform large-scale experiments that would not be possible or reproducible by hand. When applied to a typical quantitative trait loci (QTL) mapping experiment, we show that mapping power is more limited by genetic complexity than phenotyping accuracy. This will help to draw a more general picture as to how genetic diversity shapes phenotypic variation.


Assuntos
Arabidopsis/anatomia & histologia , Cromossomos de Plantas/metabolismo , Processamento de Imagem Assistida por Computador/instrumentação , Alelos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Cromossomos de Plantas/genética , Secas , Meio Ambiente , Genótipo , Escore Lod , Fenótipo , Transpiração Vegetal , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Análise Espacial , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...