Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891785

RESUMO

Intermediate filaments are one of three polymeric structures that form the cytoskeleton of epithelial cells. In the epithelium, these filaments are made up of a variety of keratin proteins. Intermediate filaments complete a wide range of functions in keratinocytes, including maintaining cell structure, cell growth, cell proliferation, cell migration, and more. Given that these functions are intimately associated with the carcinogenic process, and that hyperkeratinization is a quintessential feature of oral leukoplakias, the utility of keratins in oral leukoplakia is yet to be fully explored. This scoping review aims to outline the current knowledge founded on original studies on human tissues regarding the expression and utility of keratins as diagnostic, prognostic, and predictive biomarkers in oral leukoplakias. After using a search strategy developed for several scientific databases, namely, PubMed, Scopus, Web of Science, and OVID, 42 papers met the inclusion and exclusion criteria. One more article was added when it was identified through manually searching the list of references. The included papers were published between 1989 and 2024. Keratins 1-20 were investigated in the 43 included studies, and their expression was assessed in oral leukoplakia and dysplasia cases. Only five studies investigated the prognostic role of keratins in relation to malignant transformation. No studies evaluated keratins as a diagnostic adjunct or predictive tool. Evidence supports the idea that dysplasia disrupts the terminal differentiation pathway of primary keratins. Gain of keratin 17 expression and loss of keratin 13 were significantly observed in differentiated epithelial dysplasia. Also, the keratin 19 extension into suprabasal cells has been associated with the evolving features of dysplasia. The loss of keratin1/keratin 10 has been significantly associated with high-grade dysplasia. The prognostic value of cytokeratins has shown conflicting results, and further studies are required to ascertain their role in predicting the malignant transformation of oral leukoplakia.


Assuntos
Queratinas , Leucoplasia Oral , Humanos , Leucoplasia Oral/metabolismo , Leucoplasia Oral/patologia , Leucoplasia Oral/genética , Queratinas/metabolismo , Queratinas/genética , Prognóstico , Biomarcadores Tumorais/metabolismo
2.
Sci Rep ; 14(1): 10518, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714827

RESUMO

Previous work assessing the effect of additive noise on the postural control system has found a positive effect of additive white noise on postural dynamics. This study covers two separate experiments that were run sequentially to better understand how the structure of the additive noise signal affects postural dynamics, while also furthering our knowledge of how the intensity of auditory stimulation of noise may elicit this phenomenon. Across the two experiments, we introduced three auditory noise stimulations of varying structure (white, pink, and brown noise). Experiment 1 presented the stimuli at 35 dB while Experiment 2 was presented at 75 dB. Our findings demonstrate a decrease in variability of the postural control system regardless of the structure of the noise signal presented, but only for high intensity auditory stimulation.


Assuntos
Estimulação Acústica , Ruído , Humanos , Feminino , Masculino , Adulto , Adulto Jovem , Equilíbrio Postural/fisiologia , Cor , Postura/fisiologia , Posição Ortostática
3.
Jpn Dent Sci Rev ; 60: 53-72, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38283580

RESUMO

This study presents the results of systematic reviews on adjunctive tools in screening and diagnosis of oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMD) and to determine if the current literature supports their use as either an adjunctive tool or replacement of gold standard techniques. Systemic reviews and meta-analysis that evaluated adjunctive tools including chemiluminescence, tissue autofluorescence, tissue fluorescence spectroscopy, vital staining and cytology techniques were systematically examined using AMSTAR II. Twenty-seven systematic reviews were included. Five studies had a low quality of evidence, and nine studies had a critically low quality of evidence. This review found limited evidence to recommend chemiluminescence, tissue autofluorescence tools and vital staining as diagnostic tools, but only serve as clinical adjuncts to conventional oral examination. Cytology techniques and narrow-band imaging may be utilised as a non-invasive diagnostic adjunctive tool for the detection of OSCC and the malignant transformation of OPMD. In conclusion, this paper provides evidence on several types of adjunctive tools and provides recommendations on their use in clinical practice. These tools are considered useful as clinical adjuncts but there is insufficient evidence for their use as a diagnostic tool to replace gold standard conventional oral examination and surgical biopsy.

4.
Cogn Sci ; 47(10): e13363, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37867383

RESUMO

When multiple individuals interact in a conversation or as part of a large crowd, emergent structures and dynamics arise that are behavioral properties of the interacting group rather than of any individual member of that group. Recent work using traditional signal processing techniques and machine learning has demonstrated that global acoustic data recorded from a crowd at a basketball game can be used to classify emergent crowd behavior in terms of the crowd's purported emotional state. We propose that the description of crowd behavior from such global acoustic data could benefit from nonlinear analysis methods derived from dynamical systems theory. Such methods have been used in recent research applying nonlinear methods to audio data extracted from music and group musical interactions. In this work, we used nonlinear analyses to extract features that are relevant to the behavioral interactions that underlie acoustic signals produced by a crowd attending a sporting event. We propose that recurrence dynamics measured from these audio signals via recurrence quantification analysis (RQA) reflect information about the behavioral dynamics of the crowd itself. We analyze these dynamics from acoustic signals recorded from crowds attending basketball games, and that were manually labeled according to the crowds' emotional state across six categories: angry noise, applause, cheer, distraction noise, positive chant, and negative chant. We show that RQA measures are useful to differentiate the emergent acoustic behavioral dynamics between these categories, and can provide insight into the recurrence patterns that underlie crowd interactions.


Assuntos
Ruído , Som , Humanos , Acústica , Processamento de Sinais Assistido por Computador
5.
J Neurophysiol ; 130(2): 291-302, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377190

RESUMO

Traditionally, pitch variation in a sound stream has been integral to music identity. We attempt to expand music's definition, by demonstrating that the neural code for musicality is independent of pitch encoding. That is, pitchless sound streams can still induce music-like perception and a neurophysiological hierarchy similar to pitched melodies. Previous work reported that neural processing of sounds with no-pitch, fixed-pitch, and irregular-pitch (melodic) patterns, exhibits a right-lateralized hierarchical shift, with pitchless sounds favorably processed in Heschl's gyrus (HG), ascending laterally to nonprimary auditory areas for fixed-pitch and even more laterally for melodic patterns. The objective of this EEG study was to assess whether sound encoding maintains a similar hierarchical profile when musical perception is driven by timbre irregularities in the absence of pitch changes. Individuals listened to repetitions of three musical and three nonmusical sound-streams. The nonmusical streams were comprised of seven 200-ms segments of white, pink, or brown noise, separated by silent gaps. Musical streams were created similarly, but with all three noise types combined in a unique order within each stream to induce timbre variations and music-like perception. Subjects classified the sound streams as musical or nonmusical. Musical processing exhibited right dominant α power enhancement, followed by a lateralized increase in θ phase-locking and spectral power. The θ phase-locking was stronger in musicians than in nonmusicians. The lateralization of activity suggests higher-level auditory processing. Our findings validate the existence of a hierarchical shift, traditionally observed with pitched-melodic perception, underscoring that musicality can be achieved with timbre irregularities alone.NEW & NOTEWORTHY EEG induced by streams of pitchless noise segments varying in timbre were classified as music-like and exhibited a right-lateralized hierarchy in processing similar to pitched melodic processing. This study provides evidence that the neural-code of musicality is independent of pitch encoding. The results have implications for understanding music processing in individuals with degraded pitch perception, such as in cochlear-implant listeners, as well as the role of nonpitched sounds in the induction of music-like perceptual states.


Assuntos
Implantes Cocleares , Música , Humanos , Percepção da Altura Sonora/fisiologia , Percepção Auditiva/fisiologia , Som , Estimulação Acústica
6.
Sci Rep ; 13(1): 7154, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130838

RESUMO

Procedures used to elicit both behavioral and neurophysiological data to address a particular cognitive question can impact the nature of the data collected. We used functional near-infrared spectroscopy (fNIRS) to assess performance of a modified finger tapping task in which participants performed synchronized or syncopated tapping relative to a metronomic tone. Both versions of the tapping task included a pacing phase (tapping with the tone) followed by a continuation phase (tapping without the tone). Both behavioral and brain-based findings revealed two distinct timing mechanisms underlying the two forms of tapping. Here we investigate the impact of an additional-and extremely subtle-manipulation of the study's experimental design. We measured responses in 23 healthy adults as they performed the two versions of the finger-tapping tasks either blocked by tapping type or alternating from one to the other type during the course of the experiment. As in our previous study, behavioral tapping indices and cortical hemodynamics were monitored, allowing us to compare results across the two study designs. Consistent with previous findings, results reflected distinct, context-dependent parameters of the tapping. Moreover, our results demonstrated a significant impact of study design on rhythmic entrainment in the presence/absence of auditory stimuli. Tapping accuracy and hemodynamic responsivity collectively indicate that the block design context is preferable for studying action-based timing behavior.


Assuntos
Dedos , Hemodinâmica , Adulto , Humanos , Dedos/fisiologia , Desempenho Psicomotor/fisiologia
7.
J Oral Rehabil ; 50(6): 488-500, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855821

RESUMO

BACKGROUND: Burning mouth disorder (BMD) is a complex medical condition characterized by a burning sensation in the mouth of fluctuating intensity. BMD is considered a diagnosis of exclusion, as oral burning can occur secondary to local or systemic conditions. Parkinson's disease (PD) is one such condition. OBJECTIVE: To provide a scoping review of the literature by assessing all articles written in English that investigated the relationship between BMD and PD. MATERIALS AND METHODS: Various databases (PubMed, Ovid, Web of Science, Science Direct and Scopus) and a search platform (EBSCOhost) were searched following similar investigative approaches. Duplicates were removed and reference lists of original studies were scrutinized for additional articles. Any decision about the inclusion/exclusion in the review was by consensus among the co-authors. RESULTS: Twenty-five original articles and one supplemental article were included in the final review, of which 13 met the inclusion criteria. These were further divided into five categories based on the study design/article, which included Prevalence studies (n = 6), Letter to the editor (n = 1), Incidence study (n = 1), Case reports (n = 2) and Experimental studies (n = 3). Strongest data was provided by epidemiological studies, which suggest BMD and PD are poorly associated. CONCLUSIONS: A scoping review of the existing literature does not suggest that PD patients are any more at risk of developing BMD compared to the general population. While there may be a link through the dopaminergic system as determined by imaging studies, it is unlikely that the pathogenesis of PD disease shares significant commonality with BMD.


Assuntos
Síndrome da Ardência Bucal , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Síndrome da Ardência Bucal/etiologia , Dopamina , Diagnóstico Bucal
8.
Exp Brain Res ; 241(4): 1117-1130, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36914895

RESUMO

Bimanual in-phase and anti-phase coordination modes represent two basic movement patterns with distinct characteristics-homologous muscle contraction and non-homologous muscle contraction, respectively. A method to understand the contribution of each limb to the overall coordination pattern involves detuning (Δω) the natural eigenfrequency of each limb. In the present experiment, we experimentally broke the symmetry between the two upper limbs by adding elastic and viscous force fields using a Kinarm robot exoskeleton. We measured the effect of this symmetry breaking on coordination stability as participants performed bimanual in-phase and anti-phase movements using their left and right hand in 1:1 frequency locking mode. Differences between uncoupled frequencies were manipulated via the application of viscous & elastic force fields and using fast and slow oscillation frequencies with a custom task developed using the Kinarm robotic exoskeleton. The effects of manipulating the asymmetry between the limbs were measured through the mean and variability of relative phase (ϕ) from the intended modes of 0 ° or 180 °. In general, participants deviated less from intended phase irrespective of coordination mode in all matched conditions, except for when elastic loads are applied to both arms in the anti-phase coordination. Second, we found that when force fields were mismatched participants exhibited a larger deviation from the intended phase. Overall, there was increased phase deviation during anti-phase coordination. Finally, participants exhibited higher variability in relative phase in mismatched force conditions compared to matched force conditions, with overall higher variability during anti-phase coordination mode. We extend previous research by demonstrating that symmetry breaking caused by force differences between the limbs disrupts stability in each coordination mode.


Assuntos
Desempenho Psicomotor , Extremidade Superior , Humanos , Desempenho Psicomotor/fisiologia , Extremidade Superior/fisiologia , Mãos/fisiologia , Braço/fisiologia , Movimento/fisiologia
9.
Exp Brain Res ; 241(5): 1241-1249, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36961554

RESUMO

Auditory and somatosensory white noise can stabilize standing balance. However, the differential effects of auditory and tactile noise stimulation on balance are unknown. Prior work on unimodal noise stimulation showed gains in balance with white noise through the auditory and tactile modalities separately. The current study aims to examine whether multimodal noise elicits similar responses to unimodal noise. We recorded the postural sway of healthy young adults who were presented with continuous white noise through the auditory or tactile modalities and through a combination of both (multimodal condition) using a wearable device. Our results replicate previous work that showed that auditory or tactile noise reduces sway variability with and without vision. Additionally, we show that multimodal noise also reduces the variability of sway. Analysis of different frequency bands of sway is typically used to separate open-loop exploratory (< 0.3 Hz) and feedback-driven (> 0.3 Hz) sway. We performed this analysis and showed that unimodal and multimodal white noise affected postural sway variability similarly in both timescales. These results support that the sensory noise effects on balance are robust across unimodal and multimodal conditions and can affect both mechanisms of sway represented in the frequency spectrum. In future work, the parameters of acoustic/tactile manipulation should be optimized for the most effective balance stabilization, and multimodal therapies should be explored for older adults with typical age-related balance instabilities.


Assuntos
Ruído , Equilíbrio Postural , Adulto Jovem , Humanos , Idoso , Estimulação Acústica/métodos , Equilíbrio Postural/fisiologia , Visão Ocular , Posição Ortostática
10.
Artigo em Inglês | MEDLINE | ID: mdl-36231450

RESUMO

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is a global and evolving pandemic associated with heavy health and financial burdens. Considering the oral cavity as the major reservoir for SARS-CoV-2, a systematic review and meta-analysis were conducted to assess the efficacy of mouth rinses and nasal sprays in reducing the salivary viral load of SARS-CoV-2. All in vivo and in vitro studies that assessed the virucidal efficacy of mouth rinses and nasal sprays against SARS-CoV-2 and were published in the English language from December 2019 to April 2022 were considered for analyses. Special Medical Subject Headings terms were used to search Pubmed, Scopus, Embase Ovid, and Web of Science databases. The toxicological data reliability assessment tool (ToxRToool) was used to assess the quality of the included studies. Thirty-three studies (11 in vivo and 22 in vitro) were deemed eligible for inclusion in this analysis. Results of the pooled data showed that povidone-iodine is the most efficacious intervention in vivo in terms of reducing the SARS-CoV-2 salivary viral load, followed by chlorhexidine. The mean difference in the viral load was 86% and 72%, respectively. Similarly, povidone-iodine was associated with the highest log10 reduction value (LRV) in vitro, followed by cetylpyridinium chloride, (LRV = 2.938 (p < 0.0005) and LRV = 2.907 (p = 0.009), respectively). Povidone-iodine-based oral and nasal preparations showed favourable results in terms of reducing SARS-CoV-2 viral loads both in vivo and in vitro. Considering the limited number of patients in vivo, further studies among larger cohorts are recommended.


Assuntos
COVID-19 , SARS-CoV-2 , Cetilpiridínio , Clorexidina , Humanos , Antissépticos Bucais/farmacologia , Sprays Nasais , Povidona-Iodo/farmacologia , Reprodutibilidade dos Testes
11.
Front Integr Neurosci ; 16: 916220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865808

RESUMO

Neural mechanisms supporting time perception in continuously changing sensory environments may be relevant to a broader understanding of how the human brain utilizes time in cognition and action. In this review, we describe current theories of sensorimotor engagement in the support of subsecond timing. We focus on musical timing due to the extensive literature surrounding movement with and perception of musical rhythms. First, we define commonly used but ambiguous concepts including neural entrainment, simulation, and prediction in the context of musical timing. Next, we summarize the literature on sensorimotor timing during perception and performance and describe current theories of sensorimotor engagement in the support of subsecond timing. We review the evidence supporting that sensorimotor engagement is critical in accurate time perception. Finally, potential clinical implications for a sensorimotor perspective of timing are highlighted.

12.
J Neurophysiol ; 128(2): 326-335, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35766371

RESUMO

Perception of, and synchronization to, auditory rhythms is known to be more accurate than with flashing visual rhythms. The motor system is known to play a role in the processing of timing information for auditory rhythm perception, but it is unclear if the motor system plays the same role for visual rhythm perception. One demonstrated component of auditory rhythm perception is neural entrainment at the frequency of the auditory rhythm. In this study, we use EEG to measure the entrainment of both auditory and visual rhythms from the motor cortex while subjects either tapped in synchrony with or passively attended to the presented rhythms. To isolate activity from motor cortex, we used independent component analysis to first separate out neural sources, then selected components using a combination of component topography, dipole location, mu activation, and beta modulation. This process took advantage of the fact that tapping activity results in reduced mu power, and characteristic beta modulation, which helped select motor components. Our findings suggest neural entrainment in motor components was stronger for visual rhythms than auditory rhythms and strongest during the tapping conditions for both modalities. We also find mu power increased in response to both auditory and visual rhythms. These findings indicate that the generally greater rhythm perception capabilities of the auditory system over the visual system may not depend entirely on neural entrainment in the motor system, but rather how the motor system is able to use the timing information made available to it. NEW & NOTEWORTHY We investigated neural entrainment in the motor system for both auditory and visual isochronous rhythms using electroencephalogram. Counter to expectations, our findings suggest stronger entrainment for visual rhythms than for auditory rhythms. Motor system activity was isolated with a novel procedure using independent component analysis as a means of blind source separation, along with known markers of mu activity from the motor system to identify motor components.


Assuntos
Percepção Auditiva , Córtex Motor , Estimulação Acústica , Percepção Auditiva/fisiologia , Eletroencefalografia , Humanos
13.
Neurosci Biobehav Rev ; 135: 104587, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202646

RESUMO

Intermittent theta-burst stimulation (iTBS) has been used to focally regulate excitability of neural cortex over the past decade - however there is little consensus on the generalizability of effects reported in individual studies. Many studies use small sample sizes (N < 30), and there is a considerable amount of methodological heterogeneity in application of the stimulation itself. This systematic meta-analysis aims to consolidate the extant literature and determine if up-regulatory theta-burst stimulation reliably enhances cognition through measurable behavior. Results show that iTBS - when compared to suitable control conditions - may enhance cognition when outlier studies are removed, but also that there is a significant amount of heterogeneity across studies. Significant contributors to between-study heterogeneity include location of stimulation and method of navigation to the stimulation site. Surprisingly, the type of cognitive domain investigated was not a significant contributor of heterogeneity. The findings of this meta-analysis demonstrate that standardization of iTBS is urgent and necessary to determine if neuroenhancement of particular cognitive faculties are reliable and robust, and measurable through observable behavior.


Assuntos
Córtex Cerebral , Estimulação Magnética Transcraniana , Córtex Cerebral/fisiologia , Cognição , Humanos , Estimulação Magnética Transcraniana/métodos
14.
Sci Rep ; 12(1): 421, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013620

RESUMO

Humans interact with other humans at a variety of timescales and in a variety of social contexts. We exhibit patterns of coordination that may differ depending on whether we are genuinely interacting as part of a coordinated group of individuals vs merely co-existing within the same physical space. Moreover, the local coordination dynamics of an interacting pair of individuals in an otherwise non-interacting group may spread, propagating change in the global coordination dynamics and interaction of an entire crowd. Dynamical systems analyses, such as Recurrence Quantification Analysis (RQA), can shed light on some of the underlying coordination dynamics of multi-agent human interaction. We used RQA to examine the coordination dynamics of a performance of "Welcome to the Imagination World", composed for wind orchestra. This performance enacts a real-life simulation of the transition from uncoordinated, non-interacting individuals to a coordinated, interacting multi-agent group. Unlike previous studies of social interaction in musical performance which rely on different aspects of video and/or acoustic data recorded from each individual, this project analyzes group-level coordination patterns solely from the group-level acoustic data of an audio recording of the performance. Recurrence and stability measures extracted from the audio recording increased when musicians coordinated as an interacting group. Variability in these measures also increased, indicating that the interacting ensemble of musicians were able to explore a greater variety of behavior than when they performed as non-interacting individuals. As an orchestrated (non-emergent) example of coordination, we believe these analyses provide an indication of approximate expected distributions for recurrence patterns that may be measurable before and after truly emergent coordination.

15.
J Neurophysiol ; 127(1): 213-224, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936516

RESUMO

Brain systems supporting body movement are active during music listening in the absence of overt movement. This covert motor activity is not well understood, but some theories propose a role in auditory timing prediction facilitated by motor simulation. One question is how music-related covert motor activity relates to motor activity during overt movement. We address this question using scalp electroencephalogram by measuring mu rhythms-cortical field phenomena associated with the somatomotor system that appear over sensorimotor cortex. Lateralized mu enhancement over hand sensorimotor cortex during/just before foot movement in foot versus hand movement paradigms is thought to reflect hand movement inhibition during current/prospective movement of another effector. Behavior of mu during music listening with movement suppressed has yet to be determined. We recorded 32-channel EEG (n = 17) during silence without movement, overt movement (foot/hand), and music listening without movement. Using an independent component analysis-based source equivalent dipole clustering technique, we identified three mu-related clusters, localized to left primary motor and right and midline premotor cortices. Right foot tapping was accompanied by mu enhancement in the left lateral source cluster, replicating previous work. Music listening was accompanied by similar mu enhancement in the left, as well as midline, clusters. We are the first, to our knowledge, to report, and also to source-resolve, music-related mu modulation in the absence of overt movements. Covert music-related motor activity has been shown to play a role in beat perception (Ross JM, Iversen JR, Balasubramaniam R. Neurocase 22: 558-565, 2016). Our current results show enhancement in somatotopically organized mu, supporting overt motor inhibition during beat perception.NEW & NOTEWORTHY We are the first to report music-related mu enhancement in the absence of overt movements and the first to source-resolve mu activity during music listening. We suggest that music-related mu modulation reflects overt motor inhibition during passive music listening. This work is relevant for the development of theories relating to the involvement of covert motor system activity for predictive beat perception.


Assuntos
Percepção Auditiva/fisiologia , Ondas Encefálicas/fisiologia , Eletroencefalografia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Música , Adulto , Proteínas de Drosophila , Feminino , Pé/fisiologia , Mãos/fisiologia , Humanos , Masculino , Ubiquitina-Proteína Ligases , Adulto Jovem
16.
Soc Neurosci ; 16(6): 595-606, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517789

RESUMO

Harm to some elicits greater sympathy than harm to others. Here, we examine the role of posterior medial frontal cortex (PMFC) in regulating sympathy, and explore the potential role of PMFC in the related phenomena of mentalizing and representing others as connected with oneself. We down-regulated either PMFC or a control region (middle temporal visual area), then assessed feelings of sympathy for and self-other overlap with two characters described as having suffered physical harm, and who were framed as adversarial or affiliative, respectively. We also measured mentalizing performance with regard to inferring the cognitive and affective states of the adversarial character. As hypothesized, down-regulating PMFC increased sympathy for both characters. Whereas we had predicted that down-regulating PMFC would decrease mentalizing ability given the postulated role of PMFC in the mentalizing network, participants in the PMFC down-regulation condition evinced greater second-order cognitive inference ability relative to controls. We observed no effect of the TMS manipulation on self-other overlap, although sympathy and self-other overlap were positively correlated. These findings are discussed as they may inform understanding of the functional role(s) of PMFC in regulating responses broadly linked with empathy.


Assuntos
Emoções , Lobo Frontal , Cognição/fisiologia , Empatia , Lobo Frontal/fisiologia , Humanos , Imageamento por Ressonância Magnética
17.
Eur J Neurosci ; 54(2): 4649-4669, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34008232

RESUMO

Rhythm perception depends on the ability to predict the onset of rhythmic events. Previous studies indicate beta band modulation is involved in predicting the onset of auditory rhythmic events (Fujioka et al., 2009, 2012; Snyder & Large, 2005). We sought to determine if similar processes are recruited for prediction of visual rhythms by investigating whether beta band activity plays a role in a modality-dependent manner for rhythm perception. We looked at electroencephalography time-frequency neural correlates of prediction using an omission paradigm with auditory and visual rhythms. By using omissions, we can separate out predictive timing activity from stimulus-driven activity. We hypothesized that there would be modality-independent markers of rhythm prediction in induced beta band oscillatory activity, and our results support this hypothesis. We find induced and evoked predictive timing in both auditory and visual modalities. Additionally, we performed an exploratory-independent components-based spatial clustering analysis, and describe all resulting clusters. This analysis reveals that there may be overlapping networks of predictive beta activity based on common activation in the parietal and right frontal regions, auditory-specific predictive beta in bilateral sensorimotor regions, and visually specific predictive beta in midline central, and bilateral temporal/parietal regions. This analysis also shows evoked predictive beta activity in the left sensorimotor region specific to auditory rhythms and implicates modality-dependent networks for auditory and visual rhythm perception.


Assuntos
Eletroencefalografia , Percepção Visual , Estimulação Acústica , Percepção Auditiva , Lobo Frontal , Humanos , Lobo Parietal , Lobo Temporal
18.
J Neurosci ; 41(5): 866-872, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33380468

RESUMO

The ability to perceive and produce movements in the real world with precise timing is critical for survival in animals, including humans. However, research on sensorimotor timing has rarely considered the tight interrelation between perception, action, and cognition. In this review, we present new evidence from behavioral, computational, and neural studies in humans and nonhuman primates, suggesting a pivotal link between sensorimotor control and temporal processing, as well as describing new theoretical frameworks regarding timing in perception and action. We first discuss the link between movement coordination and interval-based timing by addressing how motor training develops accurate spatiotemporal patterns in behavior and influences the perception of temporal intervals. We then discuss how motor expertise results from establishing task-relevant neural manifolds in sensorimotor cortical areas and how the geometry and dynamics of these manifolds help reduce timing variability. We also highlight how neural dynamics in sensorimotor areas are involved in beat-based timing. These lines of research aim to extend our understanding of how timing arises from and contributes to perceptual-motor behaviors in complex environments to seamlessly interact with other cognitive processes.


Assuntos
Cognição/fisiologia , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/fisiologia , Percepção do Tempo/fisiologia , Animais , Humanos
19.
J Med Imaging Radiat Oncol ; 65(1): 70-78, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33118323

RESUMO

Temporomandibular disorders are common, especially in young to middle-aged women, and most settle with supportive treatment. MRI is the accepted reference standard for the evaluation of the temporomandibular joint and is indicated when significant internal derangement is suspected, in those who do not respond to conservative management and when the diagnosis is no doubt. Multiple pathological processes involving the temporal bone, upper pharynx and neck can mimic temporomandibular disorder secondary to anatomical proximity and referred pain related to shared sensory innervation.


Assuntos
Transtornos da Articulação Temporomandibular , Diagnóstico Diferencial , Feminino , Humanos , Luxações Articulares , Imageamento por Ressonância Magnética , Disco da Articulação Temporomandibular , Transtornos da Articulação Temporomandibular/diagnóstico por imagem
20.
Soc Cogn Affect Neurosci ; 15(12): 1361-1367, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33180108

RESUMO

Research indicates that the posterior medial frontal cortex (pMFC) functions as a 'neural alarm' complex broadly involved in registering threats and helping to muster relevant responses. Holbrook and colleagues investigated whether pMFC similarly mediates ideological threat responses, finding that downregulating pMFC via transcranial magnetic stimulation (TMS) caused (i) less avowed religious belief despite being reminded of death and (ii) less group bias despite encountering a sharp critique of the national in-group. While suggestive, these findings were limited by the absence of a non-threat comparison condition and reliance on sham rather than control TMS. Here, in a pre-registered replication and extension, we downregulated pMFC or a control region (MT/V5) and then primed participants with either a reminder of death or a threat-neutral topic. As mentioned previously, participants reminded of death reported less religious belief when pMFC was downregulated. No such effect of pMFC downregulation was observed in the neutral condition, consistent with construing pMFC as monitoring for salient threats (e.g. death) and helping to recruit ideological responses (e.g. enhanced religious belief). However, no effect of downregulating pMFC on group bias was observed, possibly due to reliance on a collegiate in-group framing rather than a national framing as in the prior study.


Assuntos
Lobo Frontal/fisiologia , Substância Cinzenta/fisiologia , Religião , Adolescente , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...