Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39056786

RESUMO

Bitter taste receptors (TAS2Rs) expressed in extraoral tissues represent a whole-body sensory system, whose role and mechanisms could be of interest for the identification of new therapeutic targets. It is known that TAS2R46s in pre-contracted airway smooth muscle cells increase mitochondrial calcium uptake, leading to bronchodilation, and that several SNPs have been identified in its gene sequence. There are very few reports on the structure-function analysis of TAS2Rs. Thus, we delved into the subject by using mutagenesis and in silico studies. We generated a cellular model that expresses native TAS2R46 to evaluate the influence of the four most common SNPs on calcium fluxes following the activation of the receptor by its specific ligand absinthin. Then, docking studies were conducted to correlate the calcium flux results to the structural mutation. The analysed SNPs differently modulate the TAS2R46 signal cascade according to the altered protein domain. In particular, the SNP in the sixth transmembrane domain of the receptors did not modulate calcium homeostasis, while the SNPs in the sequence coding for the fourth transmembrane domain completely abolished the mitochondrial calcium uptake. In conclusion, these results indicate the fourth transmembrane domain of TAS2R46 is critical for the intrinsic receptor activity.


Assuntos
Cálcio , Histamina , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G , Humanos , Polimorfismo de Nucleotídeo Único/genética , Cálcio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Histamina/metabolismo , Histamina/farmacologia , Mitocôndrias/metabolismo , Células HEK293
2.
Cell Metab ; 36(6): 1302-1319.e12, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838642

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic ß cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Transplante das Ilhotas Pancreáticas , Camundongos Endogâmicos C57BL , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Masculino , Transplante de Coração , Camundongos Endogâmicos BALB C , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Sobrevivência de Enxerto/imunologia
3.
Diabetes ; 72(11): 1641-1651, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625134

RESUMO

Extracellular (e)ATP, a potent proinflammatory molecule, is released by dying/damaged cells at the site of inflammation and is degraded by the membrane ectonucleotidases CD39 and CD73. In this study, we sought to unveil the role of eATP degradation in autoimmune diabetes. We then assessed the effect of soluble CD39 (sCD39) administration in prevention and reversal studies in NOD mice as well as in mechanistic studies. Our data showed that eATP levels were increased in hyperglycemic NOD mice compared with prediabetic NOD mice. CD39 and CD73 were found expressed by both α- and ß-cells and by different subsets of T cells. Importantly, prediabetic NOD mice displayed increased frequencies of CD3+CD73+CD39+ cells within their pancreata, pancreatic lymph nodes, and spleens. The administration of sCD39 into prediabetic NOD mice reduced their eATP levels, abrogated the proliferation of CD4+- and CD8+-autoreactive T cells, and increased the frequency of regulatory T cells, while delaying the onset of T1D. Notably, concomitant administration of sCD39 and anti-CD3 showed a strong synergism in restoring normoglycemia in newly hyperglycemic NOD mice compared with monotherapy with anti-CD3 or with sCD39. The eATP/CD39 pathway plays an important role in the onset of T1D, and its targeting might represent a potential therapeutic strategy in T1D.

4.
Adv Mater ; 35(40): e2300812, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357903

RESUMO

Immune therapeutics holds great promise in the treatment of type 1 diabetes (T1D). Nonetheless, their progress is hampered by limited efficacy, equipoise, or issues of safety. To address this, a novel and specific nanodelivery platform for T1D that targets high endothelial venules (HEVs) presented in the pancreatic lymph nodes (PLNs) and pancreas is developed. Data indicate that the pancreata of nonobese diabetic (NOD) mice and patients with T1D are unique in their expression of newly formed HEVs. Anti-CD3 mAb is encapsulated in poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles (NPs), the surfaces of which are conjugated with MECA79 mAb that recognizes HEVs. Targeted delivery of these NPs improves accumulation of anti-CD3 mAb in both the PLNs and pancreata of NOD mice. Treatment of hyperglycemic NOD mice with MECA79-anti-CD3-NPs results in significant reversal of T1D compared to those that are untreated, treated with empty NPs, or provided free anti-CD3. This effect is associated with a significant reduction of T effector cell populations in the PLNs and a decreased production of pro-inflammatory cytokine in the mice treated with MECA79-anti-CD3-NPs. In summary, HEV-targeted therapeutics may be used as a means by which immune therapeutics can be delivered to PLNs and pancreata to suppress autoimmune diabetes effectively.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Camundongos Endogâmicos NOD , Pâncreas
5.
Pharmacol Res ; 190: 106710, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871895

RESUMO

Diabetic kidney disease (DKD) is the first cause of end-stage kidney disease in patients with diabetes and its prevalence is increasing worldwide. It encompasses histological alterations that mainly affect the glomerular filtration unit, which include thickening of the basement membrane, mesangial cell proliferation, endothelial alteration, and podocyte injury. These morphological abnormalities further result in a persistent increase of urinary albumin-to-creatinine ratio and in a reduction of the estimated glomerular filtration rate. Several molecular and cellular mechanisms have been recognized, up to date, as major players in mediating such clinical and histological features and many more are being under investigation. This review summarizes the most recent advances in understanding cell death mechanisms, intracellular signaling pathways and molecular effectors that play a role in the onset and progression of diabetic kidney damage. Some of those molecular and cellular mechanisms have been already successfully targeted in preclinical models of DKD and, in some cases, strategies have been tested in clinical trials. Finally, this report sheds light on the relevance of novel pathways that may become therapeutic targets for future applications in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Humanos , Nefropatias Diabéticas/metabolismo , Podócitos/patologia , Transdução de Sinais , Taxa de Filtração Glomerular , Diabetes Mellitus/metabolismo
6.
Pharmacol Res ; 190: 106709, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842542

RESUMO

PURPOSE OF REVIEW: The purine nucleotide adenosine triphosphate (ATP) is released into extracellular spaces as extracellular ATP (eATP) as a consequence of cell injury or death and activates the purinergic receptors. Once released, eATP may facilitate T-lymphocyte activation and differentiation. The purpose of this review is to elucidate the role of ATP-mediated signaling in the immunological events related to type 1 diabetes (T1D). RECENT FINDINGS: T lymphocytes mediate immune response during the onset of T1D and promote pancreatic islet or whole pancreas rejection in transplantation. Recent data suggest a potential role for eATP in early steps of T1D onset and of allograft rejection. In different preclinical experimental models and clinical trials, several drugs targeting purinergic signaling have been employed to abrogate lymphocyte activation and differentiation, thus representing an achievable treatment to prevent/revert T1D or to induce long-term islet allograft function. SUMMARY: In preclinical and clinical settings, eATP-signaling inhibition induces immune tolerance in autoimmune disease and in allotransplantation. In this view, the purinergic system may represent a novel therapeutic target for auto- and allo-immunity.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Transplante Homólogo , Linfócitos T/metabolismo , Trifosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA