Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 419: 126135, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34157463

RESUMO

Diclofenac is an anti-inflammatory drug used as an analgesic. It is often detected in various environmental sources around the world and is considered as one of the emerging contaminants (ECs). This paper reviews the distribution of diclofenac at high concentrations in diverse environments and its adverse ecological impact. Recent studies observed strong evidence of the hazardous effect of diclofenac on mammals, including humans. Diclofenac could cause gastrointestinal complications, neurotoxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, hematotoxicity, genotoxicity, teratogenicity, bone fractures, and skin allergy in mammals even at a low concentration. Collectively, this comprehensive review relates the mode of toxicity, level of exposure, and route of administration as a unique approach for addressing the destructive consequence of diclofenac in mammalian systems. Finally, the mitigation strategy to eradicate the diclofenac toxicity through green remediation is critically discussed. This review will undoubtedly shed light on the toxic effects of pseudo-persistent diclofenac on mammals as well as frame stringent guidelines against its common usage.


Assuntos
Diclofenaco , Meio Ambiente , Animais , Anti-Inflamatórios não Esteroides , Diclofenaco/toxicidade , Humanos , Mamíferos
2.
Heliyon ; 6(11): e05495, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33251361

RESUMO

Polymer-based controlled-release formulations are gaining significant advantage over chemical fertilizers in recent years as they contribute to the preservation of soil fertility by reducing soil pollution in farm lands. In this work, urea (a nitrogen source fertilizer) has been entrapped within chitosan-alginate and gelatin-alginate composite beads at three different concentrations. The physical properties of the polymer composite beads namely the diameter, porosity, yield percentage, Carr's index and Hausner's ratio were determined. These fertilizer-loaded beads were also characterized by Scanning Electron Microscopy (SEM) and Fourier Transform-Infra Red (FT-IR) spectroscopy. Urea enhanced swelling of chitosan-alginate beads through the creation of pores whereas in the case of gelatin-alginate formulations, urea decreased the swelling. The swelling of the polymer composite beads was found to be maximum at pH of 5.6 when compared to that of pH conditions, 7 and 8.5. The chitosan-alginate composite beads were found to possess better fertilizer entrapping efficiency than the gelatin-alginate composite beads. The in vitro urea release studies demonstrated that the urea-entrapped gelatin-alginate beads exhibited slower urea release than that of the chitosan-alginate beads. These controlled release urea formulations were found to follow quasi-fickian diffusion mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA