Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37667913

RESUMO

Endothelial dysfunction is a crucial factor in promoting organ failure during septic shock. However, the underlying mechanisms are unknown. Here, we show that kidney injury after lipopolysaccharide (LPS) insult leads to strong endothelial transcriptional and epigenetic responses. Furthermore, SOCS3 loss leads to an aggravation of the responses, demonstrating a causal role for the STAT3-SOCS3 signaling axis in the acute endothelial response to LPS. Experiments in cultured endothelial cells demonstrate that IL-6 mediates this response. Furthermore, bioinformatics analysis of in vivo and in vitro transcriptomics and epigenetics suggests a role for STAT, AP1 and interferon regulatory family (IRF) transcription factors. Knockdown of STAT3 or the AP1 member JunB partially prevents the changes in gene expression, demonstrating a role for these transcription factors. In conclusion, endothelial cells respond with a coordinated response that depends on overactivated IL-6 signaling via STAT3, JunB and possibly other transcription factors. Our findings provide evidence for a critical role of IL-6 signaling in regulating shock-induced epigenetic changes and sustained endothelial activation, offering a new therapeutic target to limit vascular dysfunction.


Assuntos
Metilação de DNA , Células Endoteliais , Metilação de DNA/genética , Interleucina-6/genética , Lipopolissacarídeos , Endotélio
2.
Water Sci Technol ; 84(12): 3599-3615, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928829

RESUMO

Green synthesis of nanoparticles using natural materials is an emerging technique that fascinates the scientific community globally for the treatment of wastewater. In the present study, aquatic plants such as Piaropus crassipes (PC) and Lemna gibba (LG), were utilized to make low-cost nanoparticles, and its feasibility for the removal of Zn(II) ions was studied. The synthesized nano adsorbents were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and zeta potential analysis. The optimal conditions were evaluated by batch adsorption studies, to investigate the parameters such as pH (2-7), adsorbent dosage (0.5-5 g/L), initial concentration (20-60 mg/L), and contact time (10-120 min) etc. The isotherm, and kinetic data results fit well with Langmuir, and pseudo-second order models. The anticipated monolayer adsorption capacity with respect to the PC, and LG was found to be 42.41 mg/g and 27.65 mg/g, respectively. Thermodynamic studies showed that the process is exothermic. The adsorption mechanism of PC/LG on Zn(II) exhibited surface complexation, ion exchange, and diffusion. Desorption studies were performed to analyze the recovery potential of Zn(II) ion. Hence, this article investigates the economic synthesis of green nanoparticles, and their potential utilization in heavy metal remediation.


Assuntos
Recuperação e Remediação Ambiental , Nanopartículas , Adsorção , Termodinâmica , Águas Residuárias
3.
Environ Sci Pollut Res Int ; 27(17): 20648-20662, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31512129

RESUMO

The environment is seriously affected by the release of hazardous heavy metals from the industries. The transformation of aquatic weeds into valuable nanosorbent has been considered as effective and efficient material in the wastewater treatment process. The aim of the study is to analyze the potential of nano-EC and nano-LM for the removal of chromium(VI) and nickel(II) ions. The characteristics of nanosorbent were analyzed using Fourier transform infrared spectroscopy (FTIR), Brunauer Emmett-Teller analysis (BET), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and thermo gravimetric analysis (TGA), respectively. Adsorptive performance of nanosorbent was studied with respect to pH, contact time, nano adsorbent dosage, and metal ion concentration. The maximum monolayer adsorption capacity of Cr(VI) and Ni(II) with respect to nano-EC was found to be 79.04 mgg-1 and 85.09 mgg-1, respectively. Adsorption isotherm and kinetic studies were performed and it was reported that adsorption isotherm follows Langmuir model with regression coefficient R2 > 0.9 for nano-EC and nano-LM respectively. The pseudo-second order model was found to fit well with experimental data. Experimental results suggested that nano-EC can be considered as a suitable nanosorbent for the removal of Cr(VI) and Ni(II) ions from effluents.


Assuntos
Eichhornia , Poluentes Químicos da Água , Adsorção , Cromo , Concentração de Íons de Hidrogênio , Íons , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Toxins (Basel) ; 2(12): 2872-89, 2010 12.
Artigo em Inglês | MEDLINE | ID: mdl-22069580

RESUMO

Although advances in understanding of the pathogenesis of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) have suggested attractive treatment strategies, delivery of agents to motor neurons embedded within the spinal cord is problematic. We have designed a strategy based on the specificity of botulinum toxin, to direct entry of viral vectors carrying candidate therapeutic genes into motor neurons. We have engineered and expressed fusion proteins consisting of the binding domain of botulinum toxin type A fused to streptavidin (SAv). This fusion protein will direct biotinylated viral vectors carrying therapeutic genes into motor nerve terminals where they can enter the acidified endosomal compartments, be released and undergo retrograde transport, to deliver the genes to motor neurons. Both ends of the fusion proteins are shown to be functionally intact. The binding domain end binds to mammalian nerve terminals at neuromuscular junctions, ganglioside GT1b (a target of botulinum toxin), and a variety of neuronal cells including primary chick embryo motor neurons, N2A neuroblastoma cells, NG108-15 cells, but not to NG CR72 cells, which lack complex gangliosides. The streptavidin end binds to biotin, and to a biotinylated Alexa 488 fluorescent tag. Further studies are in progress to evaluate the delivery of genes to motor neurons in vivo, by the use of biotinylated viral vectors.


Assuntos
Toxinas Botulínicas Tipo A/genética , Doença dos Neurônios Motores/terapia , Proteínas Recombinantes de Fusão/uso terapêutico , Estreptavidina/genética , Animais , Toxinas Botulínicas Tipo A/química , Linhagem Celular Tumoral , Embrião de Galinha , Dependovirus/genética , Terapia Genética , Vetores Genéticos , Camundongos , Estrutura Terciária de Proteína , Ratos
5.
J Biosci Bioeng ; 103(1): 50-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17298901

RESUMO

We report the successful cultivation of cholesterol dependent NS0 cells in linear low-density polyethylene (LLDPE) Wave Bioreactors when employing a low ratio of cyclodextrin to cholesterol additive mixture. While cultivation of NS0 cells in Wave Bioreactors was successful when using a culture medium supplemented with fetal bovine serum (FBS), cultivation with the same culture medium supplemented with cholesterol-lipid concentrate (CLC), which contains lipids and synthetic cholesterol coupled with the carrier methyl-beta-cyclodextrin (mbetaCD), proved to be problematic. However, it was possible to cultivate NS0 cells in the medium supplemented with CLC when using conventional cultivation vessels such as disposable polycarbonate shake-flasks and glass bioreactors. A series of experiments investigating the effect of the physical conditions in Wave Bioreactors (e.g., rocking rate/angle, gas delivery mode) ruled out their likely influence, while the exposure of the cells to small squares of Wave Bioreactor film resulted in a lack of growth as in the Wave Bioreactor, suggesting an interaction between the cells, the CLC, and the LLDPE contact surface. Further experiments with both cholesterol-independent and cholesterol-dependent NS0 cells established that the concurrent presence of mbetaCD in the culture medium and the LLDPE film was sufficient to inhibit growth for both cell types. By reducing the excess mbetaCD added to the culture medium, it was possible to successfully cultivate cholesterol-dependent NS0 cells in Wave Bioreactors using a cholesterol-mbetaCD complex as the sole source of exogenous cholesterol. We propose that the mechanism of growth inhibition involves the extraction of cholesterol from cell membranes by the excess mbetaCD in the medium, followed with the irreversible adsorption or entrapment of the cholesterol-mbetaCD complexes to the LLDPE surface of the Wave Bioreactor. Controlling and mitigating these negative interactions enabled the routine utilization of disposable bioreactors for the cultivation of cholesterol-dependent NS0 cell lines in conjunction with an animal component-free cultivation medium.


Assuntos
Anticorpos Monoclonais/biossíntese , Reatores Biológicos , Colesterol/química , Colesterol/metabolismo , Análise de Injeção de Fluxo/instrumentação , Mieloma Múltiplo/metabolismo , Polietileno/química , Animais , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Equipamentos Descartáveis , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Engenharia de Proteínas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...