Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172433, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626824

RESUMO

Greenhouse gas emissions are significantly contributing to climate change, posing one of the serious threats to our planet. Addressing these emissions urgently is imperative to prevent irreversible planetary changes. One effective long-term mitigation strategy is achieving carbon neutrality. Although numerous countries aim for carbon neutrality by 2050, only a few are on track to realize this ambition. Existing technological solutions, including chemical absorption, cryogenic separation, and membrane separation, are available but tend to be costly and time intensive. Bio-capture methods present a promising opportunity in greenhouse gas mitigation research. Recent developments in biotechnology for capturing greenhouse gases have demonstrated both effectiveness and long-term benefits. This review emphasizes the recent advancements in bio-capture techniques, showcasing them as dependable and economical solutions for carbon neutrality. The article briefly outlines various bio-capture methods and underscores their potential for industrial application. Moreover, it investigates into the challenges faced when integrating bio-capture with carbon capture and storage technology. The study concludes by exploring the recent trends and prospective enhancements in ecosystem revitalization and industrial decarbonization through green conversion techniques, reinforcing the path towards carbon neutrality.

2.
ACS Omega ; 7(38): 34676-34684, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188317

RESUMO

Diabetes is a global menace, and its severity results in various disorders including cardiovascular, retinopathy, neuropathy, and nephropathy. Recently, diabetic conditions are diagnosed through the level of glycated hemoglobin. The level of glycated hemoglobin is determined with enzymatic methodology. Although the system is sensitive, it has various restrictions such as long processing times, expensive equipment required for testing, and complex steps involved in sample preparation. These limitations are a hindrance to faster results. The limitations of the developed methods can be eliminated through biosensors. In this work, an electrochemical platform was fabricated that facilitates the identification of glycated hemoglobin protein in diabetic patients. The working electrode on the integrated circuit was modified with molecularly imprinted polymer decorated with tungsten disulfide nanoparticles to enhance its analytical properties. The analytical properties of the biosensor were studied using electrochemical techniques. The obtained detection limit of the nanoelectronic sensor was 0.01 pM. The calculated sensitivity of the biosensor was observed to be 0.27 µA/pM. Also, the sensor promises to operate in a dynamic working concentration range and provide instant results.

3.
3 Biotech ; 12(1): 37, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35070627

RESUMO

Neonatal sepsis is a prime cause of neonatal deaths across the globe. Presently, various medical tests and biodevices are available in neonatal care. These diagnosis platforms possess several limitations such as being highly expensive, time-consuming, or requiring skilled professionals for operation. These limitations can be overcome through biosensor development. This work discusses the assembling of an electrochemical sensing platform that is designed to detect the level of tumor necrosis factor-alpha (TNF-α). The sensing platform was moderated with nanomaterials molybdenum disulfide nanosheets (MoS2NSs) and silicon dioxide-modified iron oxide nanoparticles (Fe3O4@SiO2NPs). The integration of nanomaterials helps in accomplishing the improved characteristics of the biosensor in terms of conductivity, selectivity, and sensitivity. Further, the molecularly imprinted polymer (MIP) approach was incorporated for sensing the presence of TNF-α on the surface of the working electrode. The electrochemical response of the electrode was recorded at different conditions. A broad concentration range was selected to optimize the biosensor from 0.01 pM to 100 nM. The sensitivity of the biosensor was higher and it exhibits a lower detection limit (0.01 pM).

4.
Food Chem ; 371: 131126, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583176

RESUMO

Organophosphates and carbamates pesticides are widely used to increase crop production globally causing a threat to human health and the environment. A variety of pesticides are applied during different stages of vegetable production. Therefore, monitoring the presence of pesticide residues in food and soil has great relevance to sensitive pesticide detection through distinct determination methods that are urgently required. Conventional techniques for the detection of pesticides have several limitations that can be overcome by the development of highly sensitive, fast, reliable and easy-to-use electrochemical biosensors. Herein, we describe the types of biosensors with the main focus on electrochemical biosensors fabricated for the detection of OPPs and carbamates pesticides. An overview of conventional techniques employed for pesticide detection is also discussed. This review aims to provide a glance of recently developed biosensors for some common pesticides like chlorpyrifos, malathion, parathion, paraoxon, and carbaryl which are present in food and environment samples.


Assuntos
Técnicas Biossensoriais , Paration , Resíduos de Praguicidas , Praguicidas , Humanos , Praguicidas/análise , Verduras
5.
Int J Biol Macromol ; 195: 589-597, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920065

RESUMO

Neonatal septicemia is a bacterial infection in newborns. It is caused by bacteria including Escherichia coli and Group B Streptococcus (GBS). Neonatal septicemia is divided into early-onset and late-onset sepsis. The diagnosis of neonatal septicemia is a challenging task because of the presence of nonspecific symptoms. Biomarkers such as C-reactive protein (CRP), procalcitonin (PCT), and serum amyloid A (SAA) can help in the detection of sepsis at early stages. The level of biomarkers is elevated once sepsis occurs in the body. This study presents the development of an electrochemical biosensor based on nanomaterials integrated molecularly imprinted polymer technique. To obtain the synergistic effect and high conductivity, multi-walled carbon nanotubes (MWCNTs), manganese oxide nanospheres (MnO2NSs), and cobalt oxide nanoparticles (Co3O4NPs) were coated over the screen-printed electrode (SPE). A further modification was done by polymerizing molecularly imprinted polymer (MIP) specifically synthesized for SAA onto modified SPE. The performance of the designed platform was evaluated through electrochemical techniques. The operating range of the developed sensor was found to be 0.01 pM to 1 µM and 0.01 pM as the lower detection limit.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Impressão Molecular , Sepse Neonatal/sangue , Sepse Neonatal/diagnóstico , Proteína Amiloide A Sérica/análise , Biomarcadores , Proteína C-Reativa , Fenômenos Químicos , Eletrodos , Humanos , Recém-Nascido , Reprodutibilidade dos Testes , Temperatura
6.
Bioprocess Biosyst Eng ; 44(12): 2469-2479, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34386846

RESUMO

Cefepime and Meropenem are the new class of antibiotics, which are particularly used as last potent defender or the antibiotics of the last resort against multi-resistant bacterial species. In this paper, an impedance-based electrochemical biosensor was fabricated for identifying antibiotics of last resort in the forensic samples including gastric lavage and other body fluids. The sensor was developed using platinum nanoparticles (PtNPs) and electrodeposited zinc oxide- zinc hexacyanoferrate hybrid film (ZnO/ZnHCF) on the surface of a fluorine-doped glass electrode (FTO). Further, penicillinase was immobilized onto the modified electrode using penicillinase enzyme. The developed biosensor exhibits a good analytical response for the detection of antibiotics evaluated using electrochemistry studies. The linear response of the fabricated electrode was observed from 0.1 to 750 µM and the electrode limit of detection (LOD) was observed as 0.1 µM. The sensor confirms good accuracy, is highly selective, and sensitive for the target. While storing the modified electrode at 4 °C, the stability of biosensor was evaluated for 45 days, and activity loss of 30-40% was observed. The highly sensitive interface of Penicillinase@CHIT/PtNP-ZnO/ZnHCF/FTO electrode shows a promising future in forensic studies.


Assuntos
Antibacterianos/análise , Eletrodos , Ferrocianetos/química , Flúor/química , Nanopartículas Metálicas/química , Penicilinase/química , Platina/química , Óxido de Zinco/química , Cefepima/análise , Enzimas Imobilizadas/química , Limite de Detecção
7.
Biosens Bioelectron ; 169: 112552, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931992

RESUMO

Neonatal sepsis is a bloodstream infection primarily caused by Escherichia coli (E. coli), Group B Streptococcus (GBS), Listeria monocytogenes, Haemophilus influenzae, S. aureus, Klebsiella spp. and non-typhoidal Salmonella bacteria. Neonatal Sepsis is referred as a critical response to the infection in the neonatal period that can lead to the failure of body organs and thereby causing damage to the tissues resulting in death of the neonates. Nearly 4 million deaths across the world are occurred due to neonatal sepsis infections. In order to prevent the bloodstream infections in the neonates, it is indispensable to diagnose the disease properly for appropriate treatment during the point of care. Numerous studies have been reported to identify major biomarkers associated with neonatal sepsis including Serum Amyloid A (SAA), C - reactive protein (CRP), Procalcitonin (PCT) and Lipopolysaccharide-binding protein (LBP). Distinct diagnostic platforms have also been developed detecting the presence of bloodstream infections including electrochemical, potentiometric, and impedimetric sensors. Recently, electrochemical biosensors with the integration of nanomaterials have emerged as a better platform for neonatal sepsis biomarkers detection. This review article summarizes the diverse screening platforms, evaluation parameters, and new advances based on implications of nanomaterials for the development of biosensors detecting neonatal sepsis infections. The review further elucidates the significance and future scope of distinctive platforms which are predominantly associated with detection of neonatal sepsis.


Assuntos
Técnicas Biossensoriais , Sepse Neonatal , Sepse , Biomarcadores , Proteína C-Reativa/análise , Calcitonina , Escherichia coli , Humanos , Recém-Nascido , Sepse Neonatal/diagnóstico , Sepse/diagnóstico , Staphylococcus aureus
8.
Int J Biol Macromol ; 164: 3943-3952, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882280

RESUMO

Forensic Science Laboratories usually receive numerous cases of suicidal, accidental, and homicidal poisoning most often involving organophosphorus (OP) pesticides. The toxicity of the OP pesticides arises due to their ability to inhibit the activity of acetylcholinesterase (AChE), a cholinergic enzyme that is essential for the proper functioning of the central nervous system. Conventional techniques which are currently in use for pesticide detection are time-consuming, need upskilled technicians as well as suffer from low sensitivity. Therefore, the more rapid and sensitive electrochemical biosensors based on the principle of AChE enzyme inhibition have emerged out to be a simple and promising alternative to the conventional techniques. Since, most of the time, the poison isolated from biological material in poisoning cases is in nM quantities, an attempt has been made for the development of biosensor with enhanced sensitivity in the nM range using reduced graphene oxide (rGO) and zinc oxide nanoflowers (ZnONFs). The rGO and ZnONFs were synthesized chemically and deposited electrochemically on the Au electrode. AChE was immobilized onto this prepared nano-interface (ZnONFs/rGO/Au) through chitosan and glutaraldehyde cross-linking. The fabricated sensor was characterized step by step with cyclic voltammogram and electrochemical impedance spectroscopy. This advanced nanomaterials based techniques has been explored for detecting pesticides in visceral samples. The limit of detection (LOD) for the present sensor was 0.01 nM for OP pesticides.


Assuntos
Acetilcolinesterase/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanoestruturas/química , Praguicidas/análise , Acetilcolinesterase/metabolismo , Fenômenos Químicos , Inibidores da Colinesterase , Enzimas Imobilizadas , Praguicidas/química , Praguicidas/farmacologia , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...