Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 39(9): 839-845, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37500315

RESUMO

OBJECTIVES: This study aims to formulate metronidazole liquid nanocapsules (MTZLNC) and evaluate their effect on the physicochemical and biological properties of calcium silicate-based bioactive endodontic cements, in vitro. METHODS: A MTZLNC suspension was formulated by deposition of the preformed polymer and characterized by laser diffraction and high-performance liquid chromatography (HPLC). Calcium silicate (CS) was mixed with a radiopaque agent (calcium tungstate - CaWO4), at 10 wt%, to produce the cement powder. Cements liquids were used with two concentrations of MTZLNC suspension: 0.3 mg/ml and 0.15 mg/ml. Cements prepared with distilled water were used as the control. The radiopacity, setting time, and flow were evaluated following ISO 6876:2012. The compressive strength analysis was conducted according to ISO 9917:2007. pH and mineral deposition were evaluated after immersion in simulated body fluid (SBF). Cell behavior was evaluated by the viability of pre-osteoblastic cells and pulp fibroblasts by SRB and MTT and the antibacterial activity against Enterococcus faecalis was analyzed immediately and after nine months of water storage. RESULTS: MTZLNCs were formulated with a median diameter of 148 nm and 83.44 % load efficiency. Increased flow and reduced strength were observed for both MTZLNCs concentrations. The incorporation of MTZLNCs maintained the ability of cements to increase pH media and promote mineral deposition over the samples, without promoting cytotoxicity. A 2 log10 reduction in E. faecalis CFU was observed immediately and after nine months in water storage. CONCLUSION: The formulation of MTZLNCs allowed the development of antibacterial calcium silicate-based-cements with suitable physicochemical properties and bioactivity, with a reduction in mechanical strength. The 0.3 mg/ml concentration in cements liquid promoted effective and sustainable antibacterial activity.


Assuntos
Compostos de Cálcio , Metronidazol , Metronidazol/farmacologia , Teste de Materiais , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Silicatos/farmacologia , Silicatos/química , Cimentos Dentários/química , Água , Antibacterianos/farmacologia , Antibacterianos/química
2.
Chemosphere ; 308(Pt 3): 136453, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122745

RESUMO

Methylmercury (MeHg) is the most common organic form of mercury (Hg) that humans are exposed and is considered an environmental pollutant. Several populations that live in endemic regions of MeHg exposure are subject to the toxicant for long periods, including pregnant women and children, causing damage to several organs during early periods of development. Alveolar bone is an essential structure for the oral cavity, responsible for supporting teeth and masticatory forces. However, evidence on the effects of MeHg on alveolar bone and the intrauterine and lactation period is lacking. Thus, this study aimed to investigate the effects of MeHg exposure during gestation and lactation on the developing alveolar bone of offspring rats after maternal exposure. Dams were exposed during 41 days of pregnancy and lactation, and the mandibles of the offspring were collected. The alveolar bone was analyzed by Fourier Transform Infrared Spectroscopy to evaluate the physicochemical composition; by Scanning Electron Microscopy for ultrastructural evaluation; by histopathological, histochemical, and morphometric for tissue analyses. In addition, bone quality was assessed by X-ray microtomography. MeHg exposure altered the mineral composition and caused histological damage associated with a lower quantity and thickness of bone trabeculae, as well as reduced osteocyte density and collagen fiber content. A reduction in trabecular thickness and bone volume and an increase in trabecular spaces were observed and were associated with anatomical compromise of the vertical bone dimensions. Thus, the results suggest that the developing alveolar bone is susceptible to the toxic effects of MeHg when organisms are exposed during intrauterine and lactation periods. From a translational perspective, these changes in the alveolar bone can help us understand possible abnormalities induced by toxic metals and highlight the need for care for structures other than those already seen as targets for damage triggered by environmental MeHg exposure.


Assuntos
Poluentes Ambientais , Mercúrio , Compostos de Metilmercúrio , Animais , Criança , Colágeno , Feminino , Humanos , Lactação , Compostos de Metilmercúrio/toxicidade , Gravidez , Ratos
3.
Environ Sci Pollut Res Int ; 28(33): 45879-45890, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33881690

RESUMO

Aluminum (Al) is one of the most found elements in nature in many forms, and human exposure can be quite common. Therefore, it is important to investigate the effects of exposure to Al mainly at low doses and for a prolonged period, in order to simulate human exposure in the periodontium, an important structure for support and protection of the teeth. This investigation aimed to study the aluminum chloride (AlCl3) toxicological effects in the mineral composition and micromorphology of the alveolar bone of rats. Two groups of eight male Wistar rats were used for the experiment. AlCl3 group was exposed to AlCl3 orally at a dose of 8.3 mg/kg/day for 60 days, while the control group received only distilled water. After that, the mandibles were collected and submitted to the following analyses: Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray microtomography analysis; blood was also collected for determination of Al circulating levels. Our data showed that AlCl3 was capable of increasing Al circulating levels in blood. It was able to promote changes in the mineral content and triggers significant changes in the mineralized bone microstructure, such as number and thickness of trabeculae, being associated with alveolar bone-loss.


Assuntos
Alumínio , Minerais , Cloreto de Alumínio , Compostos de Alumínio , Animais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...