RESUMO
Reception of chemical information from the environment is crucial for insects' survival and reproduction. The chemosensory reception mainly occurs by the antennae and mouth parts of the insect, when the stimulus contacts the chemoreceptors located within the sensilla. Chemosensory receptor genes have been well-studied in some social hymenopterans such as ants, honeybees, and wasps. However, although stingless bees are the most representative group of eusocial bees, little is known about their odorant, gustatory, and ionotropic receptor genes. Here, we analyze the transcriptome of the proboscis and antennae of the stingless bee Tetragonisca fiebrigi. We identified and annotated 9 gustatory and 15 ionotropic receptors. Regarding the odorant receptors, we identified 204, and we were able to annotate 161 of them. In addition, we compared the chemosensory receptor genes of T. fiebrigi with those annotated for other species of Hymenoptera. We found that T. fiebrigi showed the largest number of odorant receptors compared with other bees. Genetic expansions were identified in the subfamilies 9-exon, which was also expanded in ants and paper wasps; in G02A, including receptors potentially mediating social behavior; and in GUnC, which has been related to pollen and nectar scent detection. Our study provides the first report of chemosensory receptor genes in T. fiebrigi and represents a resource for future molecular and physiological research in this and other stingless bee species.
Assuntos
Receptores Odorantes , Animais , Abelhas/genética , Abelhas/fisiologia , Receptores Odorantes/genética , Transcriptoma , Filogenia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Genes de Insetos , Anotação de Sequência Molecular , Perfilação da Expressão GênicaRESUMO
Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although reports about the impact of GLY in snails, crustaceans and amphibians exist, few studies have investigated its sublethal effects in non-target organisms such as the honeybee Apis mellifera, the main pollen vector in commercial crops. Here, we tested whether exposure to three sublethal concentrations of GLY (2.5, 5 and 10 mg l(-1): corresponding to 0.125, 0.250 and 0.500 µg per animal) affects the homeward flight path of honeybees in an open field. We performed an experiment in which forager honeybees were trained to an artificial feeder, and then captured, fed with sugar solution containing traces of GLY and released from a novel site either once or twice. Their homeward trajectories were tracked using harmonic radar technology. We found that honeybees that had been fed with solution containing 10 mg l(-1) GLY spent more time performing homeward flights than control bees or bees treated with lower concentrations. They also performed more indirect homing flights. Moreover, the proportion of direct homeward flights performed after a second release from the same site increased in control bees but not in treated bees. These results suggest that, in honeybees, exposure to levels of GLY commonly found in agricultural settings impairs the cognitive capacities needed to retrieve and integrate spatial information for a successful return to the hive. Therefore, honeybee navigation is affected by ingesting traces of the most widely used herbicide worldwide, with potential long-term negative consequences for colony foraging success.
Assuntos
Abelhas/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Comportamento de Retorno ao Território Vital/efeitos dos fármacos , Navegação Espacial/efeitos dos fármacos , Animais , Abelhas/fisiologia , Voo Animal/efeitos dos fármacos , Glicina/toxicidade , Memória/efeitos dos fármacos , Radar , GlifosatoRESUMO
Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor based on age polyethism. These studies are mainly focused on the role and importance of experiences occurred during the first days of the adult lifespan, their impact on foraging decisions, and their contribution to coordinate food gathering. Odor-rewarded experiences during the first days of honeybee adulthood alter the responsiveness to sucrose, making young hive bees more sensitive to assess gustatory features about the nectar brought back to the hive and affecting the dynamic of the food transfers and the propagation of food-related information within the colony. Early olfactory experiences lead to stable and long-term associative memories that can be successfully recalled after many days, even at foraging ages. Also they improve memorizing of new associative learning events later in life. The establishment of early memories promotes stable reorganization of the olfactory circuits inducing structural and functional changes in the antennal lobe (AL). Early rewarded experiences have relevant consequences at the social level too, biasing dance and trophallaxis partner choice and affecting recruitment. Here, we revised recent results in bees' physiology, behavior, and sociobiology to depict how the early experiences affect their cognition abilities and neural-related circuits.