Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958675

RESUMO

Biological therapies only benefit one-third of patients with Crohn's disease (CD). For this reason, a deeper understanding of the mechanisms by which biologics elicit their effect on intestinal mucosa is needed. Increasing evidence points toward the involvement of long noncoding RNAs (lncRNAs) in the pathogenesis of CD, although their role remains poorly studied. We aimed to characterize lncRNA profiles in the ileum and colon from CD patients and evaluate the effect of anti-TNF-α treatment on their transcription. Terminal ileum and left colon samples from 30 patients (active CD = 10, quiescent CD = 10, and healthy controls (HCs) = 10) were collected for RNA-seq. The patients were classified according to endoscopic activity. Furthermore, biopsies were cultured with infliximab, and their transcriptome was determined by Illumina gene expression array. A total of 678 differentially expressed lncRNAs between the terminal ileum and left colon were identified in HCs, 438 in patients with quiescent CD, and 468 in patients with active CD. Additionally, we identified three new lncRNAs in the ileum associated with CD activity. No differences were observed when comparing the effect of infliximab according to intestinal location, presence of disease (CD vs. HC), and activity (active vs. quiescent). The expression profiles of lncRNAs are associated with the location of intestinal tissue, being very different in the ileum and colon. The presence of CD and disease activity are associated with the differential expression of lncRNAs. No modulatory effect of infliximab has been observed in the lncRNA transcriptome.


Assuntos
Doença de Crohn , RNA Longo não Codificante , Humanos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/genética , Doença de Crohn/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Infliximab/farmacologia , Infliximab/uso terapêutico , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Colo/patologia , Íleo/metabolismo , Mucosa Intestinal/metabolismo
2.
Biomedicines ; 11(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37893204

RESUMO

Inflammatory bowel disease (IBD) is a chronic condition which includes ulcerative colitis (UC) and Crohn's disease (CD), the origins of which are not yet fully understood. Both conditions involve an exacerbated immune response in the intestinal tract, leading to tissue inflammation. Dendritic cells (DCs) are antigen-presenting cells crucial for maintaining tolerance in the gastrointestinal mucosa. Previous research has indicated that DC recruitment to the intestinal mucosa is more pronounced in individuals with IBD, but the specific mechanisms governing this migration remain unclear. This study aimed to assess the expression of various homing markers and the migratory abilities of circulating DC subsets in response to intestinal chemotactic signals. Additionally, this study examined how golimumab and ustekinumab impact these characteristics in individuals with IBD compared to healthy controls. The findings revealed that a particular subset of DCs known as type 2 conventional DCs (cDC2) displayed a more pronounced migratory profile compared to other DC subsets. Furthermore, the study observed that golimumab and ustekinumab had varying effects on the migratory profile of cDC1 in individuals with CD and UC. While CCL2 did not exert a chemoattractant effect on DC subsets in this patient cohort, treatment with golimumab and ustekinumab enhanced their migratory capacity towards CCL2 and CCL25 while reducing their migration towards MadCam1. In conclusion, this study highlights that cDC2 exhibits a heightened migratory profile towards the gastrointestinal mucosa compared to other DC subsets. This finding could be explored further for the development of new diagnostic biomarkers or the identification of potential immunomodulatory targets in the context of IBD.

3.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373307

RESUMO

Inflammatory bowel diseases (IBDs) are chronic, heterogeneous, and inflammatory conditions mainly affecting the gastrointestinal tract. Currently, endoscopy is the gold standard test for assessing mucosal activity and healing in clinical practice; however, it is a costly, time-consuming, invasive, and uncomfortable procedure for the patients. Therefore, there is an urgent need for sensitive, specific, fast and non-invasive biomarkers for the diagnosis of IBD in medical research. Urine is an excellent biofluid for discovering biomarkers because it is non-invasive to sample. In this review, we aimed to summarize proteomics and metabolomics studies performed in both animal models of IBD and humans that identify urinary biomarkers for IBD diagnosis. Future large-scale multi-omics studies should be conducted in collaboration with clinicians, researchers, and industry to make progress toward the development of sensitive and specific diagnostic biomarkers, thereby making personalized medicine possible.


Assuntos
Líquidos Corporais , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Animais , Humanos , Biomarcadores , Colite Ulcerativa/diagnóstico , Endoscopia Gastrointestinal , Doenças Inflamatórias Intestinais/diagnóstico , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA