Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(9): 7476-7491, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37754256

RESUMO

Traumatic spinal cord injury (SCI) causes irreversible damage leading to incapacity. Molecular mechanisms underlying SCI damage are not fully understood, preventing the development of novel therapies. Tamoxifen (TMX) has emerged as a promising therapy. Our aim was to identify transcriptome changes in the acute phase of SCI and the effect of Tamoxifen on those changes in a rat model of SCI. Four groups were considered: (1) Non-injured without TMX (Sham/TMX-), (2) Non-injured with TMX (Sham/TMX+), (3) injured without TMX (SCI/TMX-), and (4) injured with TMX (SCI/TMX+). Tamoxifen was administered intraperitoneally 30 min after injury, and spinal cord tissues were collected 24 h after injury. Clariom S Assays Array was used for transcriptome analysis. After comparing Sham/TMX- versus SCI/TMX-, 708 genes showed differential expression. The enriched pathways were the SCI pathway and pathways related to the inflammatory response. When comparing SCI/TMX- versus SCI/TMX+, only 30 genes showed differential expression, with no pathways enriched. Our results showed differential expression of genes related to the inflammatory response after SCI, and Tamoxifen seems to regulate gene expression changes in Ccr2 and Mmp12. Our study contributes data regarding the potential value of tamoxifen as a therapeutic resource for traumatic SCI during the acute phase.

2.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230900

RESUMO

Hypoxia and hypoxia-inducible factors (HIFs) are essential in regulating several cellular processes, such as survival, differentiation, and the cell cycle; this adaptation is orchestrated in a complex way. In this review, we focused on the impact of hypoxia in the physiopathology of idiopathic pulmonary fibrosis (IPF) related to lung development, regeneration, and repair. There is robust evidence that the responses of HIF-1α and -2α differ; HIF-1α participates mainly in the acute phase of the response to hypoxia, and HIF-2α in the chronic phase. The analysis of their structure and of different studies showed a high specificity according to the tissue and the process involved. We propose that hypoxia-inducible transcription factor 2a (HIF-2α) is part of the persistent aberrant regeneration associated with developing IPF.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fibrose Pulmonar Idiopática , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Hipóxia Celular , Humanos , Hipóxia
3.
Front Mol Biosci ; 9: 856212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712352

RESUMO

Mycobacterium tuberculosis is an acid-fast bacterium that causes tuberculosis worldwide. The role of epistatic interactions among different loci of the M. tuberculosis genome under selective pressure may be crucial for understanding the disease and the molecular basis of antibiotic resistance acquisition. Here, we analyzed polymorphic loci interactions by applying a model-free method for epistasis detection, SpydrPick, on a pan-genome-wide alignment created from a set of 254 complete reference genomes. By means of the analysis of an epistatic network created with the detected epistatic interactions, we found that glgB (α-1,4-glucan branching enzyme) and oppA (oligopeptide-binding protein) are putative targets of co-selection in M. tuberculosis as they were associated in the network with M. tuberculosis genes related to virulence, pathogenesis, transport system modulators of the immune response, and antibiotic resistance. In addition, our work unveiled potential pharmacological applications for genotypic antibiotic resistance inherent to the mutations of glgB and oppA as they epistatically interact with fprA and embC, two genes recently included as antibiotic-resistant genes in the catalog of the World Health Organization. Our findings showed that this approach allows the identification of relevant epistatic interactions that may lead to a better understanding of M. tuberculosis by deciphering the complex interactions of molecules involved in its metabolism, virulence, and pathogenesis and that may be applied to different bacterial populations.

4.
Aging (Albany NY) ; 13(9): 12378-12394, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982668

RESUMO

Aging is a universal biological process characterized by a progressive deterioration in functional capacity and an increased risk of morbidity and mortality over time. In the lungs, there are considerable changes in lung structure and function with advancing age; however, research on the transcriptomic profile implicated in this process is scanty. In this study, we addressed the lung transcriptome changes during aging, through a global gene expression analysis of normal lungs of mice aged 4- and 18-months old. Functional pathway enrichment analysis by Ingenuity Pathway Analysis (IPA) revealed that the most enriched signaling pathways in aged mice lungs are involved in the regulation of cell apoptosis, senescence, development, oxidative stress, and inflammation. We also found 25 miRNAs significantly different in the lungs of old mice compared with their younger littermates, eight of them upregulated and 17 downregulated. Using the miRNet database we identified TNFα, mTOR, TGFß, WNT, FoxO, Apoptosis, Cell cycle, and p53 signaling pathways as the potential targets of several of the dysregulated miRNAs supporting that old lungs have increased susceptibility for apoptosis, inflammation, and fibrosis. These findings reveal differential expression profiles of genes and miRNAs affecting cell survival and the inflammatory response during lung aging.


Assuntos
Envelhecimento/metabolismo , Apoptose/fisiologia , Inflamação/metabolismo , Pulmão/metabolismo , Transcriptoma/fisiologia , Animais , Fibrose/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
5.
Front Immunol ; 12: 593595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995342

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is a global health threat with the potential to cause severe disease manifestations in the lungs. Although COVID-19 has been extensively characterized clinically, the factors distinguishing SARS-CoV-2 from other respiratory viruses are unknown. Here, we compared the clinical, histopathological, and immunological characteristics of patients with COVID-19 and pandemic influenza A(H1N1). We observed a higher frequency of respiratory symptoms, increased tissue injury markers, and a histological pattern of alveolar pneumonia in pandemic influenza A(H1N1) patients. Conversely, dry cough, gastrointestinal symptoms and interstitial lung pathology were observed in COVID-19 cases. Pandemic influenza A(H1N1) was characterized by higher levels of IL-1RA, TNF-α, CCL3, G-CSF, APRIL, sTNF-R1, sTNF-R2, sCD30, and sCD163. Meanwhile, COVID-19 displayed an immune profile distinguished by increased Th1 (IL-12, IFN-γ) and Th2 (IL-4, IL-5, IL-10, IL-13) cytokine levels, along with IL-1ß, IL-6, CCL11, VEGF, TWEAK, TSLP, MMP-1, and MMP-3. Our data suggest that SARS-CoV-2 induces a dysbalanced polyfunctional inflammatory response that is different from the immune response against pandemic influenza A(H1N1). Furthermore, we demonstrated the diagnostic potential of some clinical and immune factors to differentiate both diseases. These findings might be relevant for the ongoing and future influenza seasons in the Northern Hemisphere, which are historically unique due to their convergence with the COVID-19 pandemic.


Assuntos
COVID-19 , Citocinas , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Metaloproteinase 1 da Matriz , Metaloproteinase 3 da Matriz , Receptores Imunológicos , Adulto , Idoso , COVID-19/sangue , COVID-19/epidemiologia , COVID-19/imunologia , Citocinas/sangue , Citocinas/imunologia , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/metabolismo , Influenza Humana/sangue , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Masculino , Metaloproteinase 1 da Matriz/sangue , Metaloproteinase 1 da Matriz/imunologia , Metaloproteinase 3 da Matriz/sangue , Metaloproteinase 3 da Matriz/imunologia , Pessoa de Meia-Idade , Estudos Prospectivos , Receptores Imunológicos/sangue , Receptores Imunológicos/imunologia , Células Th1/imunologia , Células Th2/imunologia
6.
Cells ; 9(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604783

RESUMO

Interstitial lung abnormalities (ILA) are observed in around 9% of older respiratory asymptomatic subjects, mainly smokers. Evidence suggests that ILA may precede the development of interstitial lung diseases and may evolve to progressive fibrosis. Identifying biomarkers of this subclinical status is relevant for early diagnosis and to predict outcome. We aimed to identify circulating microRNAs (miRNAs) associated to ILA in a cohort of respiratory asymptomatic subjects older than 60 years. We identified 81 subjects with ILA from our Lung-Aging Program in Mexico City (n = 826). We randomly selected 112 subjects without ILA (Ctrl) from the same cohort. Using polymerase chain reaction PCR-Array technology (24 ILA and 24 Ctrl, screening cohort) and reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) (57 ILA and 88 Ctr, independent validation cohort) we identified seven up-regulated miRNAs in serum of ILA compared to Ctrl (miR-193a-5p, p < 0.0001; miR-502-3p, p < 0.0001; miR-200c-3p, p = 0.003; miR-16-5p, p = 0.003; miR-21-5p, p = 0.002; miR-126-3p, p = 0.004 and miR-34a-5p, p < 0.005). Pathways regulated by these miRNAs include transforming growth factor beta (TGF-ß), Wnt, mammalian target of rapamycin (mTOR), Insulin, mitogen-activated protein kinase (MAPK) signaling, and senescence. Receiver operator characteristic (ROC) curve analysis indicated that miR-193a-5p (area under the curve AUC: 0.75) and miR-502-3p (AUC 0.71) have acceptable diagnostic value. This is the first identification of circulating miRNAs associated to ILA in respiratory asymptomatic subjects, providing potential non-invasive biomarkers and molecular targets to better understand the pathogenic mechanisms associated to ILA.


Assuntos
Biomarcadores/metabolismo , MicroRNA Circulante/metabolismo , Doenças Pulmonares Intersticiais/genética , Idoso , Feminino , Humanos , Doenças Pulmonares Intersticiais/patologia , Masculino
7.
Sci Rep ; 10(1): 514, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949184

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) and Idiopathic Pulmonary Fibrosis (IPF) have contrasting clinical and pathological characteristics and interesting whole-genome transcriptomic profiles. However, data from public repositories are difficult to reprocess and reanalyze. Here, we present PulmonDB, a web-based database (http://pulmondb.liigh.unam.mx/) and R library that facilitates exploration of gene expression profiles for these diseases by integrating transcriptomic data and curated annotation from different sources. We demonstrated the value of this resource by presenting the expression of already well-known genes of COPD and IPF across multiple experiments and the results of two differential expression analyses in which we successfully identified differences and similarities. With this first version of PulmonDB, we create a new hypothesis and compare the two diseases from a transcriptomics perspective.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes , Fibrose Pulmonar Idiopática/genética , Doença Pulmonar Obstrutiva Crônica/genética , Curadoria de Dados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Internet , Sequenciamento do Exoma
8.
PLoS One ; 14(10): e0223512, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603936

RESUMO

Idiopathic pulmonary fibrosis is a complex disease of unknown etiology. Environmental factors can affect disease susceptibility via epigenetic effects. Few studies explore global DNA methylation in lung fibroblasts, but none have focused on transforming growth factor beta-1 (TGF-ß1) as a potential modifier of the DNA methylome. Here we analyzed changes in methylation and gene transcription in normal and IPF fibroblasts following TGF-ß1 treatment. We analyzed the effects of TGF-ß1 on primary fibroblasts derived from normal or IPF lungs treated for 24 hours and 5 days using the Illumina 450k Human Methylation array and the Prime View Human Gene Expression Array. TGF-ß1 induced an increased number of gene expression changes after short term treatment in normal fibroblasts, whereas greater methylation changes were observed following long term stimulation mainly in IPF fibroblasts. DNA methyltransferase 3 alpha (DMNT3a) and tet methylcytosine dioxygenase 3 (TET3) were upregulated after 5-days TGF-ß1 treatment in both cell types, whereas DNMT3a was upregulated after 24h only in IPF fibroblasts. Our findings demonstrate that TGF-ß1 induced the upregulation of DNMT3a and TET3 expression and profound changes in the DNA methylation pattern of fibroblasts, mainly in those derived from IPF lungs.


Assuntos
Fibroblastos/metabolismo , Pulmão/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Ilhas de CpG , Metilação de DNA/genética , Feminino , Regulação da Expressão Gênica , Frequência do Gene , Humanos , Masculino , Pessoa de Meia-Idade
9.
Aging (Albany NY) ; 10(12): 3881-3896, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30530916

RESUMO

Idiopathic pulmonary fibrosis is a devastating aging-associated disease of unknown etiology. Despite that aging is a major risk factor, the mechanisms linking aging with this disease are uncertain, and experimental models to explore them in lung fibrosis are scanty. We examined the fibrotic response to bleomycin-induced lung injury in Zmpste24-deficient mice, which exhibit nuclear lamina defects developing accelerated aging. We found that young WT and Zmpste24(-/-) mice developed a similar fibrotic response to bleomycin. Unexpectedly, while old WT mice developed severe lung fibrosis, accelerated aged Zmpste24-/- mice were protected showing scant lung damage. To investigate possible mechanisms associated with this resistance to fibrosis, we compared the transcriptome signature of the lungs and found that Zmpste24(-/-) mice showed downregulation of several core and associated matrisome genes compared with WT mice. Interestingly, some microRNAs that target extracellular matrix molecules such as miR23a, miR27a, miR29a, miR29b-1, miR145a, and miR491 were dysregulated resulting in downregulation of profibrotic pathways such as TGF-ß/SMAD3/NF-κB and Wnt3a/ß-catenin signaling axis. These results indicate that the absence of Zmpste24 in aging mice results in impaired lung fibrotic response after injury, which is likely associated to the dysregulation of fibrosis-related miRNAs.


Assuntos
Envelhecimento/genética , Bleomicina/toxicidade , Predisposição Genética para Doença , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Fibrose Pulmonar/induzido quimicamente , Animais , Antibióticos Antineoplásicos/toxicidade , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose Pulmonar/genética
10.
Am J Respir Cell Mol Biol ; 59(1): 65-76, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29345973

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by the expansion of the myofibroblast population, excessive extracellular matrix accumulation, and destruction of the lung parenchyma. The R-spondin family (RSPO) comprises a group of proteins essential for development. Among them, RSPO2 is expressed primarily in the lungs, and its mutations cause severe defects in the respiratory tract. Interestingly, RSPO2 participates in the canonical Wingless/int1 pathway, a critical route in the pathogenesis of IPF. Thus, the aim of this study was to examine the expression and putative role of RSPO2 in this disease. We found that RSPO2 and its receptor leucine-rich G protein-coupled receptor 6 were upregulated in IPF lungs, where they localized primarily in fibroblasts and epithelial cells. Stimulation of IPF and normal lung fibroblasts with recombinant human RSPO2 resulted in the deregulation of numerous genes, although the transcriptional response was essentially distinct. In IPF fibroblasts, RSPO2 stimulation induced the up- or downregulation of several genes involved in the Wingless/int1 pathway (mainly from noncanonical signaling). In both normal and IPF fibroblasts, RSPO2 modifies the expression of genes implicated in several pathways, including the cell cycle and apoptosis. In accordance with gene expression, the stimulation of normal and IPF fibroblasts with RSPO2 significantly reduced cell proliferation and induced cell death. RSPO2 also inhibited collagen production and increased the expression of matrix metalloproteinase 1. Silencing RSPO2 with shRNA induced the opposite effects. Our findings demonstrate, for the first time to our knowledge, that RSPO2 is upregulated in IPF, where it appears to have an antifibrotic role.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Regulação para Cima/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Inativação Gênica , Genoma Humano , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Metaloproteinase 1 da Matriz/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/farmacologia , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-27589961

RESUMO

Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.Database URL: http://www.biocreative.org.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Processamento Eletrônico de Dados/métodos
12.
Comput Biol Chem ; 58: 93-103, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26094112

RESUMO

Motivated by the experimental evidences accumulated in the last ten years and based on information deposited in RegulonDB, literature look up, and sequence analysis, we analyze the repertoire of 304 DNA-binding Transcription factors (TFs) in Escherichia coli K-12. These regulators were grouped in 78 evolutionary families and are regulating almost half of the total genes in this bacterium. In structural terms, 60% of TFs are composed by two-domains, 30% are monodomain, and 10% three- and four-structural domains. As previously noticed, the most abundant DNA-binding domain corresponds to the winged helix-turn-helix, with few alternative DNA-binding structures, resembling the hypothesis of successful protein structures with the emergence of new ones at low scales. In summary, we identified and described the characteristics associated to the DNA-binding TF in E. coli K-12. We also identified twelve functional modules based on a co-regulated gene matrix. Finally, diverse regulons were predicted based on direct associations between the TFs and potential regulated genes. This analysis should increase our knowledge about the gene regulation in the bacterium E. coli K-12, and provide more additional clues for comprehensive modelling of transcriptional regulatory networks in other bacteria.


Assuntos
Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Regulon
13.
Mol Biosyst ; 11(4): 994-1003, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683745

RESUMO

Transcription factors (TFs) modulate gene expression as a consequence of internal or exogenous changes in cell signaling. TFs can bind to DNA either with their effector bound (holo conformation), or as free proteins (apo conformation). With the aim of contributing to the understanding of the evolutionary fitness and organizational principles behind the different TF conformations, we inquire into the origins of these conformational differences by analyzing these two TF conformations from the perspective of Savageau's demand theory. For the control of a gene whose function is in high demand, we found that evolutionary constraints are responsible for activator TFs binding to DNA mainly in holo conformation whereas apo activation is under-represented. The mathematically controlled comparison of the apo and holo conformations reveals formal and evolutionary arguments in favor of this TF control asymmetry, which suggests that evolution favors holo activation under environmental conditions commonly found by E. coli in the human digestive tract. Specifically, the sensibility analysis performed for the holo conformation, in the positive mode of regulation, shows that the wild-type is more robust for situations where realizable changes in the model's parameters favored a better performance under non-stressful environmental conditions commonly found by E. coli in the human digestive tract. By contrast, the positive apo conformation is better adapted to adverse situations. On the other hand, the sensibility analysis performed for the negative mode of regulation showing none of the TF active conformations presents an advantage.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Modelos Genéticos , Fatores de Transcrição/genética , Escherichia coli/metabolismo , Modelos Moleculares , Mutação , Óperon , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
14.
Nucleic Acids Res ; 41(Database issue): D203-13, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23203884

RESUMO

This article summarizes our progress with RegulonDB (http://regulondb.ccg.unam.mx/) during the past 2 years. We have kept up-to-date the knowledge from the published literature regarding transcriptional regulation in Escherichia coli K-12. We have maintained and expanded our curation efforts to improve the breadth and quality of the encoded experimental knowledge, and we have implemented criteria for the quality of our computational predictions. Regulatory phrases now provide high-level descriptions of regulatory regions. We expanded the assignment of quality to various sources of evidence, particularly for knowledge generated through high-throughput (HT) technology. Based on our analysis of most relevant methods, we defined rules for determining the quality of evidence when multiple independent sources support an entry. With this latest release of RegulonDB, we present a new highly reliable larger collection of transcription start sites, a result of our experimental HT genome-wide efforts. These improvements, together with several novel enhancements (the tracks display, uploading format and curational guidelines), address the challenges of incorporating HT-generated knowledge into RegulonDB. Information on the evolutionary conservation of regulatory elements is also available now. Altogether, RegulonDB version 8.0 is a much better home for integrating knowledge on gene regulation from the sources of information currently available.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica , Elementos Reguladores de Transcrição , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Bases de Dados Genéticas/normas , Evolução Molecular , Genômica , Internet , Regiões Promotoras Genéticas , Regulon , Proteínas Repressoras/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
15.
FEMS Microbiol Rev ; 33(1): 133-51, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19076632

RESUMO

Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts. We review recent concepts and developments: cis elements and trans regulatory factors, chromosome organization and structure, transcriptional regulatory networks (TRNs) and transcriptomics. We also summarize new important discoveries that will probably affect the direction of research in gene regulation: epigenetics and stochasticity in transcriptional regulation, synthetic circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene regulation are not extensively tested with wetlab approaches. Consequently, we review this broad area in Inference of TRNs and Dynamical Models of TRNs. Finally, we have stepped backwards to trace the origins of these modern concepts, synthesizing their history in a timeline schema.


Assuntos
Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Transcrição Gênica , Bactérias/metabolismo , Proteínas de Bactérias/genética , Evolução Molecular , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...