Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
bioRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746333

RESUMO

While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

2.
Cancers (Basel) ; 13(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885218

RESUMO

The discovery of novel protein biomarkers in melanoma is crucial. Our introduction of formalin-fixed paraffin-embedded (FFPE) tumor protocol provides new opportunities to understand the progression of melanoma and open the possibility to screen thousands of FFPE samples deposited in tumor biobanks and available at hospital pathology departments. In our retrospective biobank pilot study, 90 FFPE samples from 77 patients were processed. Protein quantitation was performed by high-resolution mass spectrometry and validated by histopathologic analysis. The global protein expression formed six sample clusters. Proteins such as TRAF6 and ARMC10 were upregulated in clusters with enrichment for shorter survival, and proteins such as AIFI1 were upregulated in clusters with enrichment for longer survival. The cohort's heterogeneity was addressed by comparing primary and metastasis samples, as well comparing clinical stages. Within immunotherapy and targeted therapy subgroups, the upregulation of the VEGFA-VEGFR2 pathway, RNA splicing, increased activity of immune cells, extracellular matrix, and metabolic pathways were positively associated with patient outcome. To summarize, we were able to (i) link global protein expression profiles to survival, and they proved to be an independent prognostic indicator, as well as (ii) identify proteins that are potential predictors of a patient's response to immunotherapy and targeted therapy, suggesting new opportunities for precision medicine developments.

3.
Clin Transl Med ; 11(7): e451, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34323402

RESUMO

The MM500 meta-study aims to establish a knowledge basis of the tumor proteome to serve as a complement to genome and transcriptome studies. Somatic mutations and their effect on the transcriptome have been extensively characterized in melanoma. However, the effects of these genetic changes on the proteomic landscape and the impact on cellular processes in melanoma remain poorly understood. In this study, the quantitative mass-spectrometry-based proteomic analysis is interfaced with pathological tumor characterization, and associated with clinical data. The melanoma proteome landscape, obtained by the analysis of 505 well-annotated melanoma tumor samples, is defined based on almost 16 000 proteins, including mutated proteoforms of driver genes. More than 50 million MS/MS spectra were analyzed, resulting in approximately 13,6 million peptide spectrum matches (PSMs). Altogether 13 176 protein-coding genes, represented by 366 172 peptides, in addition to 52 000 phosphorylation sites, and 4 400 acetylation sites were successfully annotated. This data covers 65% and 74% of the predicted and identified human proteome, respectively. A high degree of correlation (Pearson, up to 0.54) with the melanoma transcriptome of the TCGA repository, with an overlap of 12 751 gene products, was found. Mapping of the expressed proteins with quantitation, spatiotemporal localization, mutations, splice isoforms, and PTM variants was proven not to be predicted by genome sequencing alone. The melanoma tumor molecular map was complemented by analysis of blood protein expression, including data on proteins regulated after immunotherapy. By adding these key proteomic pillars, the MM500 study expands the knowledge on melanoma disease.


Assuntos
Melanoma/patologia , Proteoma/metabolismo , Proteômica/métodos , Transcriptoma , Antineoplásicos/uso terapêutico , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Bases de Dados Factuais , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Mutação , Processamento de Proteína Pós-Traducional/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Espectrometria de Massas em Tandem
4.
Clin Transl Med ; 11(7): e473, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34323403

RESUMO

The MM500 study is an initiative to map the protein levels in malignant melanoma tumor samples, focused on in-depth histopathology coupled to proteome characterization. The protein levels and localization were determined for a broad spectrum of diverse, surgically isolated melanoma tumors originating from multiple body locations. More than 15,500 proteoforms were identified by mass spectrometry, from which chromosomal and subcellular localization was annotated within both primary and metastatic melanoma. The data generated by global proteomic experiments covered 72% of the proteins identified in the recently reported high stringency blueprint of the human proteome. This study contributes to the NIH Cancer Moonshot initiative combining detailed histopathological presentation with the molecular characterization for 505 melanoma tumor samples, localized in 26 organs from 232 patients.


Assuntos
Melanoma/patologia , Proteoma/análise , Proteômica/métodos , Neoplasias Cutâneas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Melanoma/metabolismo , Pessoa de Meia-Idade , Neoplasias Cutâneas/metabolismo , Espectrometria de Massas em Tandem , Adulto Jovem , Melanoma Maligno Cutâneo
5.
Cancers (Basel) ; 12(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213878

RESUMO

Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.

6.
Cell Biol Toxicol ; 36(3): 261-272, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31599373

RESUMO

In the advanced stages, malignant melanoma (MM) has a very poor prognosis. Due to tremendous efforts in cancer research over the last 10 years, and the introduction of novel therapies such as targeted therapies and immunomodulators, the rather dark horizon of the median survival has dramatically changed from under 1 year to several years. With the advent of proteomics, deep-mining studies can reach low-abundant expression levels. The complexity of the proteome, however, still surpasses the dynamic range capabilities of current analytical techniques. Consequently, many predicted protein products with potential biological functions have not yet been verified in experimental proteomic data. This category of 'missing proteins' (MP) is comprised of all proteins that have been predicted but are currently unverified. As part of the initiative launched in 2016 in the USA, the European Cancer Moonshot Center has performed numerous deep proteomics analyses on samples from MM patients. In this study, nine MPs were clearly identified by mass spectrometry in MM metastases. Some MPs significantly correlated with proteins that possess identical PFAM structural domains; and other MPs were significantly associated with cancer-related proteins. This is the first study to our knowledge, where unknown and novel proteins have been annotated in metastatic melanoma tumour tissue.


Assuntos
Melanoma/genética , Metástase Neoplásica/genética , Proteômica/métodos , Adulto , Biomarcadores Tumorais/genética , Feminino , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular/métodos , Anotação de Sequência Molecular/tendências , Prognóstico , Proteoma/genética , Proteoma/metabolismo , Neoplasias Cutâneas/genética , Melanoma Maligno Cutâneo
7.
Cancers (Basel) ; 11(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835364

RESUMO

In comparison to other human cancer types, malignant melanoma exhibits the greatest amount of heterogeneity. After DNA-based detection of the BRAF V600E mutation in melanoma patients, targeted inhibitor treatment is the current recommendation. This approach, however, does not take the abundance of the therapeutic target, i.e., the B-raf V600E protein, into consideration. As shown by immunohistochemistry, the protein expression profiles of metastatic melanomas clearly reveal the existence of inter- and intra-tumor variability. Nevertheless, the technique is only semi-quantitative. To quantitate the mutant protein there is a fundamental need for more precise techniques that are aimed at defining the currently non-existent link between the levels of the target protein and subsequent drug efficacy. Using cutting-edge mass spectrometry combined with DNA and mRNA sequencing, the mutated B-raf protein within metastatic tumors was quantitated for the first time. B-raf V600E protein analysis revealed a subjacent layer of heterogeneity for mutation-positive metastatic melanomas. These were characterized into two distinct groups with different tumor morphologies, protein profiles and patient clinical outcomes. This study provides evidence that a higher level of expression in the mutated protein is associated with a more aggressive tumor progression. Our study design, comprised of surgical isolation of tumors, histopathological characterization, tissue biobanking, and protein analysis, may enable the eventual delineation of patient responders/non-responders and subsequent therapy for malignant melanoma.

8.
Sci Rep ; 9(1): 5154, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914758

RESUMO

Metastatic melanoma is one of the most common deadly cancers, and robust biomarkers are still needed, e.g. to predict survival and treatment efficiency. Here, protein expression analysis of one hundred eleven melanoma lymph node metastases using high resolution mass spectrometry is coupled with in-depth histopathology analysis, clinical data and genomics profiles. This broad view of protein expression allowed to identify novel candidate protein markers that improved prediction of survival in melanoma patients. Some of the prognostic proteins have not been reported in the context of melanoma before, and few of them exhibit unexpected relationship to survival, which likely reflects the limitations of current knowledge on melanoma and shows the potential of proteomics in clinical cancer research.


Assuntos
Genômica , Melanoma/genética , Melanoma/patologia , Proteômica , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Estimativa de Kaplan-Meier , Análise dos Mínimos Quadrados , Masculino , Melanoma/diagnóstico , Pessoa de Meia-Idade , Análise de Componente Principal , Prognóstico , Modelos de Riscos Proporcionais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Cell Biol Toxicol ; 35(4): 293-332, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30900145

RESUMO

Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.


Assuntos
Melanoma/patologia , Melanoma/terapia , Pesquisa Translacional Biomédica/métodos , Bancos de Espécimes Biológicos/tendências , Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Imidazóis/farmacologia , Melanoma/metabolismo , Estadiamento de Neoplasias , Oximas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Piridonas/farmacologia , Pirimidinonas/farmacologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Melanoma Maligno Cutâneo
10.
Clin Transl Med ; 7(1): 22, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30079437

RESUMO

BACKGROUND: Currently, only a limited number of molecular biomarkers for malignant melanoma exist. This is the case for both diagnosing the disease, staging, and efficiently measuring the response to therapy by tracing the progression of disease development and drug impact. There is a great need to identify novel landmarks of disease progression and alterations. METHODS: Matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI) has been developed within our group to study drug localisation within micro-environmental tissue compartments. Here, we expand further on this technology development and introduce for the first time melanoma tumour tissues to map metabolite localisation utilising high resolution mass spectrometry. MALDI-MSI can measure and localise the distribution pattern of a number of small molecule metabolites within tissue compartments of tumours isolated from melanoma patients. Data on direct measurements of metabolite identities attained at the local sites in tissue compartments has not been readily available as a measure of a clinical index for most cancer diseases. The current development on the mapping of endogenous molecular expression melanoma tumours by mass spectrometry imaging focuses on the establishment of a cancer tissue preparation process whereby a matrix crystal formation is homogenously built on the tissue surface, providing uniform molecular mapping. We apply this micro-preparation technology to disease presentation by mapping the molecular signatures from patient tumour sections. RESULTS: We have automated the process with a micro-technological dispensing platform. This provides the basis for thin film generation of the cancer patient tissues prior to imaging screening. Compartmentalisation of the tumour regions are displayed within the image analysis interfaced with histopathological grading and characterisation. CONCLUSIONS: This enables site localisation within the tumour with image mapping to disease target areas such as melanoma cells, macrophages, and lymphocytes.

11.
Cell Commun Signal ; 16(1): 36, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29966518

RESUMO

BACKGROUND: Chemotherapeutic efficacy can be improved by targeting the structure and function of the extracellular matrix (ECM) in the carcinomal stroma. This can be accomplished by e.g. inhibiting TGF-ß1 and -ß3 or treating with Imatinib, which results in scarcer collagen fibril structure in xenografted human KAT-4/HT29 (KAT-4) colon adenocarcinoma. METHODS: The potential role of αVß6 integrin-mediated activation of latent TGF-ß was studied in cultured KAT-4 and Capan-2 human ductal pancreatic carcinoma cells as well as in xenograft carcinoma generated by these cells. The monoclonal αVß6 integrin-specific monoclonal antibody 3G9 was used to inhibit the αVß6 integrin activity. RESULTS: Both KAT-4 and Capan-2 cells expressed the αVß6 integrin but only KAT-4 cells could utilize this integrin to activate latent TGF-ß in vitro. Only when Capan-2 cells were co-cultured with human F99 fibroblasts was the integrin activation mechanism triggered, suggesting a more complex, fibroblast-dependent, activation pathway. In nude mice, a 10-day treatment with 3G9 reduced collagen fibril thickness and interstitial fluid pressure in KAT-4 but not in the more desmoplastic Capan-2 tumors that, to achieve a similar effect, required a prolonged 3G9 treatment. In contrast, a 10-day direct inhibition of TGF-ß1 and -ß3 reduced collagen fibril thickness in both tumor models. CONCLUSION: Our data demonstrate that the αVß6-directed activation of latent TGF-ß plays a pivotal role in modulating the stromal collagen network in carcinoma, but that the sensitivity to αVß6 inhibition depends on the simultaneous presence of alternative paths for latent TGF-ß activation and the extent of desmoplasia.


Assuntos
Antígenos de Neoplasias/imunologia , Colágeno/química , Integrinas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Colágeno/metabolismo , Líquido Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Integrinas/metabolismo , Camundongos , Pressão , Fator de Crescimento Transformador beta/metabolismo
12.
PLoS One ; 12(4): e0176167, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445515

RESUMO

BACKGROUND: Metastatic melanoma is still one of the most prevalent skin cancers, which upon progression has neither a prognostic marker nor a specific and lasting treatment. Proteomic analysis is a versatile approach with high throughput data and results that can be used for characterizing tissue samples. However, such analysis is hampered by the complexity of the disease, heterogeneity of patients, tumors, and samples themselves. With the long term aim of quest for better diagnostics biomarkers, as well as predictive and prognostic markers, we focused on relating high resolution proteomics data to careful histopathological evaluation of the tumor samples and patient survival information. PATIENTS AND METHODS: Regional lymph node metastases obtained from ten patients with metastatic melanoma (stage III) were analyzed by histopathology and proteomics using mass spectrometry. Out of the ten patients, six had clinical follow-up data. The protein deep mining mass spectrometry data was related to the histopathology tumor tissue sections adjacent to the area used for deep-mining. Clinical follow-up data provided information on disease progression which could be linked to protein expression aiming to identify tissue-based specific protein markers for metastatic melanoma and prognostic factors for prediction of progression of stage III disease. RESULTS: In this feasibility study, several proteins were identified that positively correlated to tumor tissue content including IF6, ARF4, MUC18, UBC12, CSPG4, PCNA, PMEL and MAGD2. The study also identified MYC, HNF4A and TGFB1 as top upstream regulators correlating to tumor tissue content. Other proteins were inversely correlated to tumor tissue content, the most significant being; TENX, EHD2, ZA2G, AOC3, FETUA and THRB. A number of proteins were significantly related to clinical outcome, among these, HEXB, PKM and GPNMB stood out, as hallmarks of processes involved in progression from stage III to stage IV disease and poor survival. CONCLUSION: In this feasibility study, promising results show the feasibility of relating proteomics to histopathology and clinical outcome, and insight thus can be gained into the molecular processes driving the disease. The combined analysis of histological features including the sample cellular composition with protein expression of each metastasis enabled the identification of novel, differentially expressed proteins. Further studies are necessary to determine whether these putative biomarkers can be utilized in diagnostics and prognostic prediction of metastatic melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/patologia , Neoplasias Cutâneas/patologia , Adulto , Idoso , Biomarcadores Tumorais/análise , Progressão da Doença , Feminino , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Metástase Linfática , Masculino , Melanoma/metabolismo , Melanoma/mortalidade , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Proteômica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Cutâneas/metabolismo , Taxa de Sobrevida , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
13.
Cancer Res ; 76(16): 4765-74, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27216186

RESUMO

Cancer genome sequencing has shed light on the underlying genetic aberrations that drive tumorigenesis. However, current sequencing-based strategies, which focus on a single tumor biopsy, fail to take into account intratumoral heterogeneity. To address this challenge and elucidate the evolutionary history of melanoma, we performed whole-exome and transcriptome sequencing of 41 multiple melanoma biopsies from eight individual tumors. This approach revealed heterogeneous somatic mutations in the range of 3%-38% in individual tumors. Known mutations in melanoma drivers BRAF and NRAS were always ubiquitous events. Using RNA sequencing, we found that the majority of mutations were not expressed or were expressed at very low levels, and preferential expression of a particular mutated allele did not occur frequently. In addition, we found that the proportion of ultraviolet B (UVB) radiation-induced C>T transitions differed significantly (P < 0.001) between early and late mutation acquisition, suggesting that different mutational processes operate during the evolution of metastatic melanoma. Finally, clinical history reports revealed that patients harboring a high degree of mutational heterogeneity were associated with more aggressive disease progression. In conclusion, our multiregion tumor-sequencing approach highlights the genetic evolution and non-UVB mutational signatures associated with melanoma development and progression, and may provide a more comprehensive perspective of patient outcome. Cancer Res; 76(16); 4765-74. ©2016 AACR.


Assuntos
Análise Mutacional de DNA/métodos , Evolução Molecular , Melanoma/genética , Exoma , Humanos , Mutação , Transcriptoma
14.
Acta Obstet Gynecol Scand ; 94(10): 1064-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26123703

RESUMO

INTRODUCTION: In early-stage endometrial carcinoma, there is controversy regarding the prognostic value of the flow cytometric variables DNA ploidy (diploid vs. aneuploid) and S-phase fraction. In Sweden, the former is included in national guidelines despite poor scientific support and the latter is not used clinically. This study investigates the prognostic properties of these variables, together with classical histopathological variables, in multivariate analysis in a stringently stratified material. MATERIAL AND METHODS: Consecutive, population-based patient material restricted to International Federation of Gynecology and Obstetrics (FIGO) 2009 stage I endometrioid endometrial carcinoma (n = 1140) was retrospectively collected from routinely reported data from medical records. Data on age, FIGO stage, degree of differentiation, S-phase fraction, DNA ploidy status, and adjuvant treatment were included in the study. Cumulative incidence curves with other causes of death as a competing risk were used for univariable analysis for the primary endpoint endometrial cancer death. Cox proportional hazards regression analysis was used for multivariate modeling of all endpoints, and for univariable analysis for the secondary endpoints overall survival and time to progression. RESULTS: An S-phase fraction value of >5.5% was associated with worse outcome (for endometrial cancer death: hazard ratio 2.25; 95% CI 1.38-3.67; p = 0.001, adjusted) and DNA ploidy status was not, for all endpoints tested. CONCLUSIONS: In FIGO stage I endometrioid endometrial carcinoma, DNA ploidy status had no prognostic value, whereas the S-phase fraction may be used to identify those with a higher risk of adverse clinical outcome.


Assuntos
Carcinoma Endometrioide/mortalidade , Neoplasias do Endométrio/mortalidade , Idoso , Carcinoma Endometrioide/fisiopatologia , Proliferação de Células , DNA de Neoplasias/genética , Neoplasias do Endométrio/fisiopatologia , Feminino , Citometria de Fluxo , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Ploidias , Prognóstico , Fase S , Análise de Sobrevida
15.
Arch Pharm Res ; 38(9): 1718-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26198812

RESUMO

MALDI mass spectrometry imaging (MSI) provides a technology platform that allows the accurate visualization of unlabeled small molecules within the two-dimensional spaces of tissue samples. MSI has proven to be a powerful tool-box concept in the development of new drugs. MSI allows unlabeled drug compounds and drug metabolites to be detected and identified and quantified according to their mass-to-charge ratios (m/z) at high resolution in complex tissue environments. Such drug characterization in situ, by both spatial and temporal behaviors within tissue compartments, provide new understandings of the dynamic processes impacting drug uptake and metabolism at the local sites targeted by therapy. Further, MSI in combination with histology and immunohistochemistry, provides the added value of defining the context of cell biology present at the sites of drug localization thus providing invaluable information relating to treatment efficacy. In this report we provide mass spectrometry imaging data within various cancers such as malignant melanoma in patients administered with vemurafenib, a protein kinase inhibitor that is targeting BRAF mutated proteins and that has shown significant efficacy in restraining disease progression. We also provide an overview of other examples of the new generation of targeted drugs, and demonstrate the data on personalized medicine drugs localization within tumor compartments within in vivo models. In these cancer models we provide detailed data on drug and target protein co-localization of YCG185 and sunitinib. These drugs are targeting VEGFR2 within the angiogenesis mechanism. Our ability to resolve drug uptake at targeted sites of directed therapy provides important opportunities for increasing our understanding about the mode of action of drug activity within the environment of disease.


Assuntos
Antineoplásicos/metabolismo , Composição de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Indóis/química , Indóis/metabolismo , Indóis/uso terapêutico , Medicina de Precisão/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Pirróis/química , Pirróis/metabolismo , Pirróis/uso terapêutico , Sunitinibe , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
PLoS One ; 10(4): e0123661, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874936

RESUMO

Malignant melanoma has the highest increase of incidence of malignancies in the western world. In early stages, front line therapy is surgical excision of the primary tumor. Metastatic disease has very limited possibilities for cure. Recently, several protein kinase inhibitors and immune modifiers have shown promising clinical results but drug resistance in metastasized melanoma remains a major problem. The need for routine clinical biomarkers to follow disease progression and treatment efficacy is high. The aim of the present study was to build a protein sequence database in metastatic melanoma, searching for novel, relevant biomarkers. Ten lymph node metastases (South-Swedish Malignant Melanoma Biobank) were subjected to global protein expression analysis using two proteomics approaches (with/without orthogonal fractionation). Fractionation produced higher numbers of protein identifications (4284). Combining both methods, 5326 unique proteins were identified (2641 proteins overlapping). Deep mining proteomics may contribute to the discovery of novel biomarkers for metastatic melanoma, for example dividing the samples into two metastatic melanoma "genomic subtypes", ("pigmentation" and "high immune") revealed several proteins showing differential levels of expression. In conclusion, the present study provides an initial version of a metastatic melanoma protein sequence database producing a total of more than 5000 unique protein identifications. The raw data have been deposited to the ProteomeXchange with identifiers PXD001724 and PXD001725.


Assuntos
Bases de Dados de Proteínas , Melanoma/metabolismo , Análise de Sequência de Proteína/métodos , Neoplasias Cutâneas/metabolismo , Bancos de Espécimes Biológicos , Cromatografia Líquida , Biologia Computacional , Mineração de Dados , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Metástase Neoplásica , Proteômica/métodos , Suécia , Espectrometria de Massas em Tandem , Melanoma Maligno Cutâneo
17.
PLoS One ; 9(10): e110804, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25333933

RESUMO

Globally, malignant melanoma shows a steady increase in the incidence among cancer diseases. Malignant melanoma represents a cancer type where currently no biomarker or diagnostics is available to identify disease stage, progression of disease or personalized medicine treatment. The aim of this study was to assess the tissue expression of alpha-synuclein, a protein implicated in several disease processes, in metastatic tissues from malignant melanoma patients. A targeted Selected Reaction Monitoring (SRM) assay was developed and utilized together with stable isotope labeling for the relative quantification of two target peptides of alpha-synuclein. Analysis of alpha-synuclein protein was then performed in ten metastatic tissue samples from the Lund Melanoma Biobank. The calibration curve using peak area ratio (heavy/light) versus concentration ratios showed linear regression over three orders of magnitude, for both of the selected target peptide sequences. In support of the measurements of specific protein expression levels, we also observed significant correlation between the protein and mRNA levels of alpha-synuclein in these tissues. Investigating levels of tissue alpha-synuclein may add novel aspect to biomarker development in melanoma, help to understand disease mechanisms and ultimately contribute to discriminate melanoma patients with different prognosis.


Assuntos
Biomarcadores Tumorais/biossíntese , Melanoma/genética , RNA Mensageiro/biossíntese , alfa-Sinucleína/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Especificidade de Órgãos , Prognóstico , Proteômica , RNA Mensageiro/genética , alfa-Sinucleína/genética
18.
Proteomics ; 14(17-18): 1963-70, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25044963

RESUMO

Malignant melanoma (MM) patients are being treated with an increasing number of personalized medicine (PM) drugs, several of which are small molecule drugs developed to treat patients with specific disease genotypes and phenotypes. In particular, the clinical application of protein kinase inhibitors has been highly effective for certain subsets of MM patients. Vemurafenib, a protein kinase inhibitor targeting BRAF-mutated protein, has shown significant efficacy in slowing disease progression. In this paper, we provide an overview of this new generation of targeted drugs, and demonstrate the first data on localization of PM drugs within tumor compartments. In this study, we have introduced MALDI-MS imaging to provide new information on one of the drugs currently used in the PM treatment of MM, vemurafenib. In a proof-of-concept in vitro study, MALDI-MS imaging was used to identify vemurafenib applied to metastatic lymph nodes tumors of subjects attending the regional hospital network of Southern Sweden. The paper provides evidence of BRAF overexpression in tumors isolated from MM patients and localization of the specific drug targeting BRAF, vemurafenib, using MS fragment ion signatures. Our ability to determine drug uptake at the target sites of directed therapy provides important opportunity for increasing our understanding about the mode of action of drug activity within the disease environment.


Assuntos
Antineoplásicos , Indóis , Melanoma , Imagem Molecular/métodos , Medicina de Precisão/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sulfonamidas , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Indóis/farmacocinética , Indóis/uso terapêutico , Melanoma/química , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/química , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico , Vemurafenib
19.
Diagn Pathol ; 9: 126, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24968821

RESUMO

BACKGROUND: Immunohistochemical staining for mismatch repair proteins is efficient and widely used to identify mismatch repair defective tumors. The tumors typically show uniform and widespread loss of MMR protein staining. We identified and characterized colorectal cancers with alternative, heterogenous mismatch repair protein staining in order to delineate expression patterns and underlying mechanisms. METHODS: Heterogenous staining patterns that affected at least one of the mismatch repair proteins MLH1, PMS2, MSH2 and MSH6 were identified in 14 colorectal cancers. Based on alternative expression patterns macro-dissected and micro-dissected tumor areas were separately analyzed for microsatellite instability and MLH1 promoter methylation. RESULTS: Heterogenous retained/lost mismatch repair protein expression could be classified as intraglandular (within or in-between glandular formations), clonal (in whole glands or groups of glands) and compartmental (in larger tumor areas/compartments or in between different tumor blocks). These patterns coexisted in 9/14 tumors and in the majority of the tumors correlated with differences in microsatellite instability/MLH1 methylation status. CONCLUSIONS: Heterogenous mismatch repair status can be demonstrated in colorectal cancer. Though rare, attention to this phenomenon is recommended since it corresponds to differences in mismatch repair status that are relevant for correct classification. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1771940323126788.


Assuntos
Pareamento Incorreto de Bases , Biomarcadores Tumorais/análise , Neoplasias Colorretais/química , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Metilação de DNA , Enzimas Reparadoras do DNA/análise , Proteínas de Ligação a DNA/análise , Dinamarca , Humanos , Imuno-Histoquímica , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/análise , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Suécia
20.
J Proteome Res ; 13(3): 1315-26, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24490776

RESUMO

Currently there are no clinically recognized molecular biomarkers for malignant melanoma (MM) for either diagnosing disease stage or measuring response to therapy. The aim of this feasibility study was to develop targeted selected reaction monitoring (SRM) assays for identifying candidate protein biomarkers in metastatic melanoma tissue lysate. In a pilot study applying the SRM assay, the tissue expression of nine selected proteins [complement 3 (C3), T-cell surface glycoprotein CD3 epsilon chain E (CD3E), dermatopontin, minichromosome maintenance complex component (MCM4), premelanosome protein (PMEL), S100 calcium binding protein A8 (S100A8), S100 calcium binding protein A13 (S100A13), transgelin-2 and S100B] was quantified in a small cohort of metastatic malignant melanoma patients. The SRM assay was developed using a TSQ Vantage triple quadrupole mass spectrometer that generated highly accurate peptide quantification. Repeated injection of internal standards spiked into matrix showed relative standard deviation (RSD) from 6% to 15%. All nine target proteins were identified in tumor lysate digests spiked with heavy peptide standards. The multiplex SRM peptide assay panel was then measured and quantified on a set of frozen MM tissue samples obtained from the Malignant Melanoma Biobank collected in Lund, Sweden. All nine proteins could be accurately quantified using the new SRM assay format. This study provides preliminary data on the heterogeneity of biomarker expression within MM patients. The S100B protein, which is clinically used as the pathology identifier of MM, was identified in 9 out of 10 MM tissue lysates. The use of the targeted SRM assay provides potential advancements in the diagnosis of MM that can aid in future assessments of disease in melanoma patients.


Assuntos
Biomarcadores Tumorais/análise , Melanoma/diagnóstico , Proteínas de Neoplasias/análise , Subunidade beta da Proteína Ligante de Cálcio S100/análise , Neoplasias Cutâneas/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Bancos de Espécimes Biológicos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estudos de Viabilidade , Feminino , Expressão Gênica , Humanos , Metástase Linfática , Masculino , Melanoma/genética , Melanoma/metabolismo , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteômica , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Extratos de Tecidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...