Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Commun Earth Environ ; 4(1): 82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665192

RESUMO

Classic Maya populations living in peri-urban states were highly dependent on seasonally distributed rainfall for reliable surplus crop yields. Despite intense study of the potential impact of decadal to centennial-scale climatic changes on the demise of Classic Maya sociopolitical institutions (750-950 CE), its direct importance remains debated. We provide a detailed analysis of a precisely dated speleothem record from Yok Balum cave, Belize, that reflects local hydroclimatic changes at seasonal scale over the past 1600 years. We find that the initial disintegration of Maya sociopolitical institutions and population decline occurred in the context of a pronounced decrease in the predictability of seasonal rainfall and severe drought between 700 and 800 CE. The failure of Classic Maya societies to successfully adapt to volatile seasonal rainfall dynamics likely contributed to gradual but widespread processes of sociopolitical disintegration. We propose that the complex abandonment of Classic Maya population centres was not solely driven by protracted drought but also aggravated by year-to-year decreases in rainfall predictability, potentially caused by a regional reduction in coherent Intertropical Convergence Zone-driven rainfall.

3.
Nat Commun ; 13(1): 3911, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853849

RESUMO

The influence of climate change on civil conflict and societal instability in the premodern world is a subject of much debate, in part because of the limited temporal or disciplinary scope of case studies. We present a transdisciplinary case study that combines archeological, historical, and paleoclimate datasets to explore the dynamic, shifting relationships among climate change, civil conflict, and political collapse at Mayapan, the largest Postclassic Maya capital of the Yucatán Peninsula in the thirteenth and fourteenth centuries CE. Multiple data sources indicate that civil conflict increased significantly and generalized linear modeling correlates strife in the city with drought conditions between 1400 and 1450 cal. CE. We argue that prolonged drought escalated rival factional tensions, but subsequent adaptations reveal regional-scale resiliency, ensuring that Maya political and economic structures endured until European contact in the early sixteenth century CE.


Assuntos
Mudança Climática , Secas , Aclimatação , Arqueologia
4.
Sci Adv ; 6(7): eaax3644, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32110724

RESUMO

Large changes in hydroclimate in the Neotropics implied by proxy evidence, such as during the Little Ice Age, have been attributed to meridional shifts of the intertropical convergence zone (ITCZ), although alternative modes of ITCZ variability have also been suggested. Here, we use seasonally resolved stalagmite rainfall proxy data from the modern northern limit of the ITCZ in southern Belize, combined with records from across the Neotropics and subtropics, to fingerprint ITCZ variability during the Common Era. Our data are consistent with models that suggest ITCZ expansion and weakening during globally cold climate intervals and contraction and intensification during global warmth. As a result, regions currently in the margins of the ITCZ in both hemispheres are likely transitioning to more arid and highly variable conditions, aggravating current trends of increased social unrest and mass migration.


Assuntos
Clima Tropical , Isótopos de Carbono/análise , Cavernas , Clima , Geografia , Sedimentos Geológicos/química , Chuva , Estações do Ano , Fatores de Tempo , Urânio/análise , Análise de Ondaletas
5.
Sci Total Environ ; 616-617: 1007-1013, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29100692

RESUMO

It is becoming increasingly clear that a substantial reservoir of carbon exists in the unsaturated zone of aquifers, though the total size of this reservoir on a global scale remains unquantified. Here we provide the first broad estimate of the amount of carbon dioxide gas found in this terrestrial reservoir. We calculate that between 2 and 53 PgC exists as gaseous CO2 in aquifers worldwide, generated by the slow microbial oxidation of organic particles transported into aquifers by percolating groundwater. Importantly, this carbon reservoir is in the form of CO2 gas, and is therefore transferable to the Earth's atmosphere without any phase change. On a coarse scale, water table depths are partially controlled by local sea level; sea level lowering therefore allows slow carbon sequestration into the reservoir and sea level increases force rapid CO2 outgassing from this reservoir. High-resolution cave air pCO2 data demonstrate that sea level variability does affect CO2 outgassing rates from the unsaturated zone, and that the CO2 outgassing due to sea level rise currently occurs on daily (tidal) timescales. We suggest that global mean water table depth must modulate the global unsaturated zone volume and the size of this carbon reservoir, potentially affecting atmospheric CO2 on geological timescales.

6.
Sci Rep ; 7: 45809, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378755

RESUMO

The presence of a low- to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low- to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low- to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics.

7.
Sci Rep ; 6: 37522, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876831

RESUMO

Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the North American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. Our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.

8.
Sci Rep ; 5: 17442, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26616338

RESUMO

The mechanisms responsible for millennial scale climate change within glacial time intervals are equivocal. Here we show that all eight known radiometrically-dated Tambora-sized or larger NH eruptions over the interval 30 to 80 ka BP are associated with abrupt Greenland cooling (>95% confidence). Additionally, previous research reported a strong statistical correlation between the timing of Southern Hemisphere volcanism and Dansgaard-Oeschger (DO) events (>99% confidence), but did not identify a causative mechanism. Volcanic aerosol-induced asymmetrical hemispheric cooling over the last few hundred years restructured atmospheric circulation in a similar fashion as that associated with Last Glacial millennial-scale shifts (albeit on a smaller scale). We hypothesise that following both recent and Last Glacial NH eruptions, volcanogenic sulphate injections into the stratosphere cooled the NH preferentially, inducing a hemispheric temperature asymmetry that shifted atmospheric circulation cells southward. This resulted in Greenland cooling, Antarctic warming, and a southward shifted ITCZ. However, during the Last Glacial, the initial eruption-induced climate response was prolonged by NH glacier and sea ice expansion, increased NH albedo, AMOC weakening, more NH cooling, and a consequent positive feedback. Conversely, preferential SH cooling following large SH eruptions shifted atmospheric circulation to the north, resulting in the characteristic features of DO events.

9.
Science ; 338(6108): 788-91, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23139330

RESUMO

The role of climate change in the development and demise of Classic Maya civilization (300 to 1000 C.E.) remains controversial because of the absence of well-dated climate and archaeological sequences. We present a precisely dated subannual climate record for the past 2000 years from Yok Balum Cave, Belize. From comparison of this record with historical events compiled from well-dated stone monuments, we propose that anomalously high rainfall favored unprecedented population expansion and the proliferation of political centers between 440 and 660 C.E. This was followed by a drying trend between 660 and 1000 C.E. that triggered the balkanization of polities, increased warfare, and the asynchronous disintegration of polities, followed by population collapse in the context of an extended drought between 1020 and 1100 C.E.


Assuntos
Civilização/história , Mudança Climática/história , Indígenas Centro-Americanos/história , Sistemas Políticos/história , Chuva , Agricultura/história , Belize , Cavernas , Secas/história , História Antiga , Humanos , Isótopos de Oxigênio , Guerra
10.
Science ; 317(5839): 748, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17690274
11.
Science ; 296(5576): 2203-6, 2002 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-12077412

RESUMO

Abrupt first-order shifts in strontium and phosphorus concentrations in stalagmite calcite deposited in western Ireland during the 8200-year event (the major cooling episode 8200 years before the present) are interpreted as responses to a drier climate lasting about 37 years. Both shifts are centered on 8330 +/- 80 years before the present, coinciding with a large oxygen isotope anomaly and a change in the calcite petrography. In this very high resolution (monthly) record, antipathetic second-order oscillations in phosphorus and strontium reveal decreased growth rates and increased rainfall seasonality. Growth rate variations within the event reveal a two-pronged structure consistent with recent model simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...