Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743292

RESUMO

The phenylethylamine, 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy'), is the prototypical example of an entactogen. Its original placement in highly restrictive drug usage categories in the US and UK, led to an inevitable restriction on MDMA neuroscience research and treatment. The dominant pharmacological effects of MDMA are its properties of release and inhibition of reuptake of amine neurotransmitter transporters for dopamine, norepinephrine, and serotonin. MDMA is an agonist of a wide range of receptors; its mood-altering effects are mediated via 5-HT2A receptors; this receptor may also mediate its effects on body temperature, analgesia, and anxiolytic properties. The mechanisms underlying MDMA's entactogenic properties of sociability and interpersonal closeness are not known but release and involvement of oxytocin, a peptide thought by some to be involved in social bonding, has been suggested. Adverse effects of MDMA are mostly transient; acute multiorgan adverse effects occurring during raves or crowded dance gatherings include dehydration, hyperthermia, seizures, rhabdomyolysis, disseminated intravascular coagulation, and acute renal failure. Deaths following MDMA taken by itself are rare compared to fatalities following coadministration with other drugs. A recent FDA-approved phase 3 clinical trial of MDMA for post-traumatic stress disorder (PTSD) led to the conclusion that MDMA-assisted therapy represents a potential breakthrough treatment meriting expedited clinical evaluation. Despite the ongoing deliberations by the FDA and EMA for approval of MDMA treatment of PTSD, the Australian Therapeutic Goods Administration (TGA) recently announced that after an evaluation of the therapeutic value, benefits, and risks of MDMA, it will permit its prescribing for the treatment of PTSD. Further examples of regulatory relaxation toward MDMA-assisted psychotherapy are underway. These include the FDA's recently approved clinical trial to assess MDMA's efficacy in the treatment of "asociality" in patients with schizophrenia and an open trial of MDMA treatment for alcohol-use disorder which showed decreased alcohol consumption. There are also ongoing studies on the little understood startle response, anxiety associated with life-threatening illness, and social anxiety in autistic adults.

3.
Arch Toxicol ; 97(10): 2575-2585, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37537419

RESUMO

The increasing use of opioids in pregnant women has led to an alarming rise in the number of cases of neonates with drug-induced withdrawal symptoms known as neonatal opioid withdrawal syndrome (NOWS). NOWS is a toxic heterogeneous condition with many neurologic, autonomic, and gastrointestinal symptoms including poor feeding, irritability, tachycardia, hypertension, respiratory defects, tremors, hyperthermia, and weight loss. Paradoxically, for the management of NOWS, low doses of morphine, methadone, or buprenorphine are administered. NOWS is a polygenic disorder supported by studies of genomic variation in opioid-related genes. Single-nucleotide polymorphisms (SNPs) in CYP2B6 are associated with variations in NOWS infant responses to methadone and SNPs in the OPRM1, ABCB1, and COMT genes are associated with need for treatment and length of hospital stay. Epigenetic gene changes showing higher methylation levels in infants and mothers have been associated with more pharmacologic treatment in the case of newborns, and for mothers, longer infant hospital stays. Respiratory disturbances associated with NOWS are not well characterized. Little is known about the effects of opioids on developing neonatal respiratory control and respiratory distress (RD), a potential problem for survival of the neonate. In a rat model to test the effect of maternal opioids on the developing respiratory network and neonatal breathing, maternal-derived methadone increased apneas and lessened RD in neonates at postnatal (P) days P0 and P1. From P3, breathing normalized with age suggesting reorganization of respiratory rhythm-generating circuits at a time when the preBötC becomes the dominant inspiratory rhythm generator. In medullary slices containing the preBötC, maternal opioid treatment plus exposure to exogenous opioids showed respiratory activity was maintained in younger but not older neonates. Thus, maternal opioids blunt centrally controlled respiratory frequency responses to exogenous opioids in an age-dependent manner. In the absence of maternal opioid treatment, exogenous opioids abolished burst frequencies at all ages. Prenatal opioid exposure in children stunts growth rate and development while studies of behavior and cognitive ability reveal poor performances. In adults, high rates of attention deficit disorder, hyperactivity, substance abuse, and poor performances in intelligence and memory tests have been reported.


Assuntos
Síndrome de Abstinência Neonatal , Transtornos Relacionados ao Uso de Opioides , Insuficiência Respiratória , Síndrome de Abstinência a Substâncias , Humanos , Recém-Nascido , Lactente , Adulto , Criança , Feminino , Gravidez , Animais , Ratos , Analgésicos Opioides/toxicidade , Farmacogenética , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/complicações , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Síndrome de Abstinência a Substâncias/complicações , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Metadona/efeitos adversos , Síndrome de Abstinência Neonatal/genética , Síndrome de Abstinência Neonatal/complicações , Síndrome de Abstinência Neonatal/tratamento farmacológico , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/genética
4.
Neuropsychopharmacology ; 48(13): 1952-1962, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37640922

RESUMO

Mu-opioid receptor (µ-OR) signaling in forebrain sites including nucleus accumbens (Acb) and ventromedial prefrontal cortex (vmPFC) modulates reward-driven feeding and may play a role in the pathophysiology of disordered eating. In preclinical models, intra-Acb or intra-vmPFC µ-OR stimulation causes overeating and vigorous responding for food rewards. These effects have been studied mainly in male animals, despite demonstrated sex differences and estrogen modulation of central reward systems. Hence, the present study investigated sex differences and estrogen modulation of intra-Acb and intra-vmPFC µ-OR-driven feeding behaviors. First, the dose-related effects of intra-Acb and intra-vmPFC infusions of the µ-OR-selective agonist, DAMGO, were compared among intact female, ovariectomized (OVX) female, and intact male rats. The DAMGO feeding dose-effect function was flattened in intact females relative to the robust, dose-dependent effects observed in OVX females and intact males. Thus, in intact females, intra-Acb DAMGO failed to elevate food intake relative to vehicle, while intra-vmPFC DAMGO elevated food intake, but to a smaller degree compared to males and OVX females. Next, to explore the possible role of estrogen in mediating the diminished DAMGO response observed in intact females, OVX rats were given intra-Acb or intra-vmPFC infusions of DAMGO either immediately after a subcutaneous injection of 17-beta-estradiol 3-benzoate (EB; 5 µg/0.1 mL) or 24 h after EB injection. Intra-Acb DAMGO effects were not changed at the immediate post-EB time point. At the delayed post-EB timepoint, significant lordosis was noted and the duration of intra-Acb DAMGO-driven feeding bouts was significantly reduced, with no change in the number of bouts initiated, locomotor hyperactivity, or Fos immunoreactivity in hypothalamic feeding and arousal systems. Similarly, EB failed to alter the motor-activational effects of intra-vmPFC DAMGO while reducing feeding. These findings indicate that delayed, presumably genomically mediated estrogen actions modulate the µ-OR-generated motivational state by reducing consummatory activity while sparing goal-approach and general arousal/activity. The results additionally suggest that EB regulation of consummatory activity occurs outside of forebrain-µ-OR control of hypothalamic systems.


Assuntos
Analgésicos Opioides , Comportamento Alimentar , Ratos , Feminino , Masculino , Animais , Analgésicos Opioides/farmacologia , Ratos Sprague-Dawley , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Núcleo Accumbens , Estrogênios/farmacologia , Atividade Motora , Receptores Opioides mu/metabolismo
5.
Br J Clin Pharmacol ; 89(11): 3232-3246, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430437

RESUMO

MRGPRX2, a novel Gaq -coupled human mast cell receptor, mediates non-immune adverse reactions without the involvement of antibody priming. Constitutively expressed by human skin mast cells, MRGPRX2 modulates cell degranulation producing pseudoallergies manifesting as itch, inflammation and pain. The term pseudoallergy is defined in relation to adverse drug reactions in general and immune/non-immune-mediated reactions in particular. A list of drugs with MRGPRX2 activity is presented, including a detailed examination of three important and widely used approved therapies: neuromuscular blockers, quinolones and opioids. For the clinician, the significance of MRGPRX2 is considered as an aid in distinguishing and ultimately identifying specific immune and non-immune inflammatory reactions. Anaphylactoid/anaphylactic reactions, neurogenic inflammation and inflammatory diseases with a clear or strongly suspected association with MRGPRX2 activation are examined. Inflammatory diseases include chronic urticaria, rosacea, atopic dermatitis, allergic contact dermatitis, mastocytosis, allergic asthma, ulcerative colitis and rheumatoid arthritis. MRGPRX2- and allergic IgE/FcεRI-mediated reactions may be clinically similar. Importantly, the usual testing procedures do not distinguish the two mechanisms. Currently, identification of MRGPRX2 activation and diagnosis of pseudoallergic reactions is generally viewed as a process of exclusion once other non-immune and immune processes, particularly IgE/FcεRI-mediated degranulation of mast cells, are ruled out. This does not take into account that MRGPRX2 signals via ß-arrestin, which can be utilized to detect MRGPRX2 activation by employing MRGPRX2 transfected cells to assess MRGPRX2 activation via two pathways, the G-protein-independent ß-arrestin pathway and the G-protein-dependent Ca2+ pathway. Testing procedures, interpretations for distinguishing mechanisms, patient diagnosis, agonist identification and drug safety evaluations are addressed.


Assuntos
Anafilaxia , Receptores de IgE , Humanos , Receptores de IgE/metabolismo , Receptores de Neuropeptídeos/metabolismo , Mastócitos/metabolismo , Inflamação , Imunoglobulina E , Proteínas de Ligação ao GTP/metabolismo , beta-Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas do Tecido Nervoso/metabolismo
6.
Arch Toxicol ; 97(2): 359-375, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36344690

RESUMO

Insights into the pathophysiology of many non-immune-mediated drug reactions referred to as toxicities, sensitivities, intolerances, or pseudoallergies have resulted from research identifying the mastocyte-related G-protein-coupled receptor (GPCR) member X2 (MRGPRX2), a human mast cell receptor mediating adverse reactions without the involvement of antibody priming. Opioid-induced degranulation of mast cells, particularly morphine, provoking release of histamine and other preformed mediators and causing hemodynamic and cutaneous changes seen as flushing, headache and wheal and flare reactions in the skin, is an example of results of MRGPRX2 activation. Opioids including morphine, codeine, dextromethorphan and metazocine as well as endogenous prodynorphin opioid peptides activate MRGPRX2 at concentrations causing mast cell degranulation. Unlike the canonical opioid receptors, MRGPRX2 shows stereochemical recognition preference for dextro rather than levo opioid enantiomers. Opioid analgesic drugs (OADs) display a range of histamine-releasing potencies from the strong releaser morphine to doubtful releasers like hydromorphone and the non-releaser fentanyl. Whether there is a correlation between histamine release by individual OADs, MRGPRX2 activation, and presence or absence of adverse cutaneous effects is not known. To investigate the question, ongoing research with recently pursued methodologies and strategies employing basophil and mast cell tests resulting from MRGPRX2 insights should help to elucidate whether or not an opioid's histamine-releasing potency, and its property of provoking an adverse reaction, are each a reflection of its activation of MRGPRX2.


Assuntos
Analgésicos Opioides , Hipersensibilidade , Humanos , Analgésicos Opioides/toxicidade , Histamina/farmacologia , Receptores de Neuropeptídeos , Receptores Acoplados a Proteínas G , Derivados da Morfina/farmacologia , Mastócitos , Degranulação Celular , Proteínas do Tecido Nervoso
7.
Curr Res Toxicol ; 3: 100078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734228

RESUMO

Respiratory depression (RD) is the primary cause of death due to opioids. Opioids bind to mu (µ)-opioid receptors (MORs) encoded by the MOR gene Oprm1, widely expressed in the central and peripheral nervous systems including centers that modulate breathing. Respiratory centers are located throughout the brainstem. Experiments with Oprm1-deleted knockout (KO) mice undertaken to determine which sites are necessary for the induction of opioid-induced respiratory depression (OIRD) showed that the pre-Bötzinger complex (preBötC) and the pontine Kölliker-Fuse nucleus (KF) contribute equally to OIRD but RD was not totally eliminated. Morphine showed a differential influence on preBötC and KF neurons - low doses attenuated RD following deletion of MORs from preBötC neurons and an increase in apneas after high doses whereas deletion of MORs from KF neurons but not the preBötC attenuated RD at both high and low doses. In other KO mice studies, morphine administration after deletion of Oprm1 from both the preBötC and the KF/PBN neurons, led to the conclusion that both respiratory centres contribute to OIRD but the preBötC predominates. MOR-mediated post-synaptic activation of GIRK potassium channels has been implicated as a cause of OIRD. A complementary mechanism in the preBötC involving KCNQ potassium channels independent of MOR signaling has been described. Recent experiments in rats showing that morphine depresses normal, but not gasping breathing, cast doubt on the belief that eupnea, sighs, and gasps, are under the control of preBötC neurons. Methadone, administered to alleviate symptoms of neonatal opioid withdrawal syndrome (NOWES), desensitized rats to OIRD. Protection lost between postnatal days 1 and 2 coincides with the preBötC becoming the dominant generator of respiratory rhythm. Neonatal antidepressant exposure syndrome (NADES) and serotonin toxicity (ST) show similarities including RD. Enzyme CYP2D6 involved in opioid detoxification is polymorphic. Individuals of different CYP2D6 genotype may show increased, decreased, or no enzyme activity, contributing to the variability of patient responses to different opioids and OIRD.

8.
Arch Toxicol ; 96(8): 2247-2260, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471232

RESUMO

Opioid-induced respiratory depression (OIRD), the primary cause of opioid-induced death, is the neural depression of respiratory drive which, together with a decreased level of consciousness and obstructive sleep apnea, cause ventilatory insufficiency. Variability of responses to opioids and individual differences in physiological and neurological states (e.g., anesthesia, sleep-disordered breathing, concurrent drug administration) add to the risk. Multiple sites can independently exert a depressive effect on breathing, making it unclear which sites are necessary for the induction of OIRD. The generator of inspiratory rhythm is the preBötzinger complex (preBötC) in the ventrolateral medulla. Other important brainstem respiratory centres include the pontine Kölliker-Fuse and adjacent parabrachial nuclei (KF/PBN) in the dorsal lateral pons, and the dorsal respiratory group in the medulla. Deletion of µ opioid receptors from neurons showed that the preBötC and KF/PBN contribute to OIRD with the KF as a respiratory modulator and the preBötC as inspiratory rhythm generator. Glutamatergic neurons expressing NK-1R and somatostatin involved in the autonomic function of breathing, and modulatory signal pathways involving GIRK and KCNQ potassium channels, remain poorly understood. Reversal of OIRD has relied heavily on naloxone which also reverses analgesia but mismatches between the half-lives of naloxone and opioids can make it difficult to clinically safely avoid OIRD. Maternal opioid use, which is rising, increases apneas and destabilizes neonatal breathing but opioid effects on maternal and neonatal respiratory circuits in neonatal abstinence syndrome (NAS) are not well understood. Methadone, administered to alleviate symptoms of NAS in humans, desensitizes rats to RD.


Assuntos
Analgésicos Opioides , Insuficiência Respiratória , Analgésicos Opioides/toxicidade , Animais , Naloxona/farmacologia , Ratos , Receptores Opioides mu , Centro Respiratório/fisiologia , Insuficiência Respiratória/induzido quimicamente
9.
Behav Neurosci ; 136(3): 219-229, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35389677

RESUMO

The present study investigated immediate versus delayed effects of estrogen replacement in ovariectomized (OVX) rats on hyperphagia elicited by gamma-aminobutyric acid (GABA)-A-agonist (muscimol) infusions into the nucleus accumbens shell (AcbSh). First, because intra-AcbSh muscimol-induced feeding has never been explored in OVX rats, a dose-effect curve was generated and compared to sham-operated males, the current point of reference in the literature. Muscimol (5, 10, 25, and 50 ng) increased food intake in both sexes, and both sexes reached the same asymptotic level of intake. Nevertheless, slopes of the linearized dose-effect functions for males and OVX females differed significantly, with females starting at a lower baseline and exhibiting a steeper slope. Next, the behavioral profiles of a behaviorally active, but nonmaximal intra-AcbSh muscimol dose (25 ng), were examined in a separate group of OVX females at two time-points: immediately after injecting 17ß-estradiol 3-benzoate (EB) subcutaneously (5 µg), and 24 hr post-EB. Delayed, but not immediate, EB pretreatment suppressed, but did not eliminate, muscimol-driven food intake. However, EB did not change nonfood-directed behaviors such as locomotion or rearing. These results demonstrate that feeding mediated by intra-AcbSh GABA-A receptors is delimited by delayed, but not rapid, effects of estradiol. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Núcleo Accumbens , Ácido gama-Aminobutírico , Animais , Ingestão de Alimentos , Estrogênios/farmacologia , Comportamento Alimentar , Masculino , Muscimol/farmacologia , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/fisiologia
10.
Antibodies (Basel) ; 11(1)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35323191

RESUMO

Identification of new disease-associated biomarkers; specific targeting of such markers by monoclonal antibodies (mAbs); and application of advances in recombinant technology, including the production of humanized and fully human antibodies, has enabled many improved treatment outcomes and successful new biological treatments of some diseases previously neglected or with poor prognoses. Of the 110 mAbs preparations currently approved by the FDA and/or EMA, 46 (including 13 antibody-drug conjugates) recognizing 29 different targets are indicated for the treatment of cancers, and 66, recognizing 48 different targets, are indicated for non-cancer disorders. Despite their specific targeting with the expected accompanying reduced collateral damage for normal healthy non-involved cells, mAbs, may cause types I (anaphylaxis, urticaria), II (e.g., hemolytic anemia, possibly early-onset neutropenia), III (serum sickness, pneumonitis), and IV (Stevens-Johnson syndrome, toxic epidermal necrolysis) hypersensitivities as well as other cutaneous, pulmonary, cardiac, and liver adverse events. MAbs can provoke severe infusion reactions that resemble anaphylaxis and induce a number of systemic, potentially life-threatening syndromes with low frequency. A common feature of most of these syndromes is the release of a cascade of cytokines associated with inflammatory and immunological processes. Epidermal growth factor receptor-targeted antibodies may provoke papulopustular and mucocutaneous eruptions that are not immune-mediated.

11.
Neuropsychopharmacology ; 47(7): 1358-1366, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35091673

RESUMO

Subregions within insular cortex and medial prefrontal cortex (mPFC) have been implicated in eating disorders; however, the way these brain regions interact to produce dysfunctional eating is poorly understood. The present study explored how two mPFC subregions, the infralimbic (IL) and prelimbic (PRL) cortices, regulate sucrose hyperphagia elicited specifically by a neurochemical manipulation of the agranular/dysgranular region of gustatory insula (AI/DI). Using intra-AI/DI infusion of the mu-opioid receptor (µ-OR) agonist, DAMGO (1 µg), sucrose hyperphagia was generated in ad-libitum-maintained rats, while in the same rat, either the IL or prelimbic (PRL) subregion of mPFC was inactivated bilaterally with muscimol (30 ng). Intra-IL muscimol markedly potentiated AI/DI DAMGO-induced sucrose hyperphagia by increasing eating bout duration and food consumption per bout. In contrast, PRL attenuated intra-AI/DI DAMGO-driven sucrose intake and feeding duration and eliminated the small DAMGO-induced increase in feeding bout initiation. Intra-IL or -PRL muscimol alone (i.e., without intra-AI/DI DAMGO) did not alter feeding behavior, but slightly reduced exploratory-like rearing in both mPFC subregions. These results reveal anatomical heterogeneity in mPFC regulation of the intense feeding-motivational state engendered by µ-OR signaling in the gustatory insula: IL significantly curtails consummatory activity, while PRL modestly contributes to feeding initiation. Results are discussed with regard to potential circuit-based mechanisms that may underlie the observed results.


Assuntos
Hiperfagia , Córtex Pré-Frontal , Animais , Ingestão de Alimentos , Ala(2)-MePhe(4)-Gly(5)-Encefalina , Muscimol/farmacologia , Ratos , Ratos Sprague-Dawley , Sacarose
13.
Platelets ; 33(4): 562-569, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34348059

RESUMO

Experiments were undertaken to identify the nature of a previously identified inhibitor of PAF-induced platelet aggregation (PA) in human saliva. Human saliva fractionated by preparative thin layer chromatography (TLC) yielded a fraction that co-migrated with fatty acids (FAs) and inhibited PAF-induced aggregation of platelets. Synthetic FAs tested for their capacities to inhibit 0.1 nM PAF-induced PA showed that only the cis-unsaturated compounds were inhibitory with activities of some of the polyunsaturated FAs (PUFA) reaching almost 100% at 20 µM. Eicosapentanoic acid (EPA) and 8,11,14-eicosatrienoic acid also deaggregated the PAF-induced aggregates. With the exception of oleic acid (OLA), cis-monounsaturated FAs, and elaidic acid, the trans isomer of OLA, were poor inhibitors. In a direct comparison with other platelet agonists, ADP, thrombin, and ionophore A23187, the active saliva fraction and selected individual FAs inhibited, to greater or lesser extent, PA induced by each of the agonists. EPA, OLA, linoleic acid (LNA), and the active saliva fraction were potent inhibitors of ADP-induced PA, EPA completely inhibited thrombin-induced PA and the saliva fraction showed only weak - moderate inhibitory activity to both thrombin- and ionophore A23187-induced PA. Other reports of endogenous PAF inhibitors in mammalian tissues are compared to the present results. PAF can trigger and amplify inflammatory cascades suggesting a possible modulation role for cis-unsaturated FAs in some diseases.


Assuntos
Fator de Ativação de Plaquetas , Agregação Plaquetária , Difosfato de Adenosina/farmacologia , Animais , Plaquetas , Calcimicina/análise , Calcimicina/farmacologia , Ácidos Graxos/análise , Ácidos Graxos/farmacologia , Humanos , Ionóforos/análise , Ionóforos/farmacologia , Mamíferos , Fator de Ativação de Plaquetas/análise , Fator de Ativação de Plaquetas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Saliva/química , Trombina/farmacologia
14.
Neuropsychopharmacology ; 46(11): 1981-1989, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34226656

RESUMO

This study explored potentially dissociable functions of mu-opioid receptor (µ-OR) signaling across different cortical territories in the control of anticipatory activity directed toward palatable food, consumption, and impulsive food-seeking behavior in male rats. The µ-OR agonist, DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), was infused into infralimbic cortex (ILC), prelimbic cortex (PrL), medial and lateral ventral orbitofrontal cortices (VMO, VLO), and agranular/dysgranular insular (AI/DI) cortex of rats. Intra-ILC DAMGO markedly enhanced contact with a see-through screen behind which sucrose pellets were sequestered; in addition, rats having received intra-ILC and intra-VMO DAMGO exhibited locomotor hyperactivity while the screen was in place. Upon screen removal, intra-ILC and -VMO-treated rats emitted numerous, brief sucrose-intake bouts (yielding increased overall intake) interspersed with significant hyperactivity. In contrast, intra-AI/DI-treated rats consumed large amounts of sucrose in long, uninterrupted bouts with no anticipatory hyperactivity pre-screen removal. Intra-PrL and intra-VLO DAMGO altered neither pre-screen behavior nor sucrose intake. Finally, all rats were tested in a sucrose-reinforced differential reinforcement of low rates (DRL) task, which assesses the ability to advantageously withhold premature responses. DAMGO affected (impaired) DRL performance when infused into ILC only. These site-based dissociations reveal differential control of µ-OR-modulated appetitive/approach vs. consummatory behaviors by ventromedial/orbitofrontal and insular networks, respectively, and suggest a unique role of ILC µ-ORs in modulating inhibitory control.


Assuntos
Analgésicos Opioides , Hiperfagia , Animais , Comportamento Impulsivo , Masculino , Córtex Pré-Frontal , Ratos , Ratos Sprague-Dawley
15.
Arch Toxicol ; 95(8): 2627-2642, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974096

RESUMO

Opioid-induced respiratory depression is potentially life-threatening and often regarded as the main hazard of opioid use. Main cause of death is cardiorespiratory arrest with hypoxia and hypercapnia. Respiratory depression is mediated by opioid µ receptors expressed on respiratory neurons in the CNS. Studies on the major sites in the brainstem mediating respiratory rate suppression, the pre-BÓ§tzinger complex and parabrachial complex (including the KÓ§lliker Fuse nucleus), have yielded conflicting findings and interpretations but recent investigations involving deletion of µ receptors from neurons have led to greater consensus. Some opioid analgesic drugs are histamine releasers. The range of clinical effects of released histamine include increased cardiac output due to an increase in heart rate, increased force of myocardial contraction, and a dilatatory effect on small blood vessels leading to flushing, decreased vascular resistance and hypotension. Resultant hemodynamic changes do not necessarily relate directly to the concentration of histamine in plasma due to a range of variables including functional differences between mast cells and histamine-induced anaphylactoid reactions may occur less often than commonly believed. Opioid-induced histamine release rarely if ever provokes bronchospasm and histamine released by opioids in normal doses does not lead to anaphylactoid reactions or result in IgE-mediated reactions in normal patients. Hypersensitivities to opioids, mainly some skin reactions and occasional type I hypersensitivities, chiefly anaphylaxis and urticaria, are uncommon. Hypersensitivities to morphine, codeine, heroin, methadone, meperidine, fentanyl, remifentanil, buprenorphine, tramadol, and dextromethorphan are summarized. In 2016, the FDA issued a Drug Safety Communication concerning the association of opioids with serotonin syndrome, a toxicity associated with raised intra-synaptic concentrations of serotonin in the CNS, inhibition of serotonin reuptake, and activation of 5-HT receptors. Opioids may provoke serotonin toxicity especially if administered in conjunction with other serotonergic medications. The increasing use of opioid analgesics and widespread prescribing of antidepressants and psychiatric medicines, indicates the likelihood of an increased incidence of serotonin toxicity in opioid-treated patients.


Assuntos
Analgésicos Opioides/efeitos adversos , Hipersensibilidade a Drogas/etiologia , Insuficiência Respiratória/induzido quimicamente , Analgésicos Opioides/administração & dosagem , Animais , Hemodinâmica/efeitos dos fármacos , Liberação de Histamina/efeitos dos fármacos , Humanos , Síndrome da Serotonina/induzido quimicamente
18.
Br J Anaesth ; 124(1): 44-62, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31653394

RESUMO

Most cases of serotonin toxicity are provoked by therapeutic doses of a combination of two or more serotonergic drugs, defined as drugs affecting the serotonin neurotransmitter system. Common serotonergic drugs include many antidepressants, antipsychotics, and opioid analgesics, particularly fentanyl, tramadol, meperidine (pethidine), and methadone, but rarely morphine and other related phenanthrenes. Symptoms of serotonin toxicity are attributable to an effect on monoaminergic transmission caused by an increased synaptic concentration of serotonin. The serotonin transporter (SERT) maintains low serotonin concentrations and is important for the reuptake of the neurotransmitter into the presynaptic nerve terminals. Some opioids inhibit the reuptake of serotonin by inhibiting SERT, thus increasing the plasma and synaptic cleft serotonin concentrations that activate the serotonin receptors. Opioids that are good inhibitors of SERT (tramadol, dextromethorphan, methadone, and meperidine) are most frequently associated with serotonin toxicity. Tramadol also has a direct serotonin-releasing action. Fentanyl produces an efflux of serotonin, and binds to 5-hydroxytryptamine (5-HT)1A and 5-HT2A receptors, whilst methadone, meperidine, and more weakly tapentadol, bind to 5-HT2A but not 5-HT1A receptors. The perioperative period is a time where opioids and other serotonergic drugs are frequently administered in rapid succession, sometimes to patients with other serotonergic drugs in their system. This makes the perioperative period a relatively risky time for serotonin toxicity to occur. The intraoperative recognition of serotonin toxicity is challenging as it can mimic other serious syndromes, such as malignant hyperthermia, sepsis, thyroid storm, and neuroleptic malignant syndrome. Anaesthetists must maintain a heightened awareness of its possible occurrence and a readiness to engage in early treatment to avoid poor outcomes.


Assuntos
Analgésicos Opioides/efeitos adversos , Anestesiologistas , Serotoninérgicos/efeitos adversos , Síndrome da Serotonina/terapia , Febre/induzido quimicamente , Humanos , Complicações Intraoperatórias/induzido quimicamente , Síndrome da Serotonina/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...